Most existing formation control approaches for Unmanned Aerial Vehicle(UAV)swarm assume that global position and global coordinate frame are directly available for each agent.To extend the application domain,this pape...Most existing formation control approaches for Unmanned Aerial Vehicle(UAV)swarm assume that global position and global coordinate frame are directly available for each agent.To extend the application domain,this paper proposes a distributed bearing-based formation control scheme,without any reliance on global position or global coordinate frame.The interactions among UAVs are described by a directed topology with two-leader structure.To address the issue of unavailable global coordinate frame,we first present a distributed orientation estimation law for each UAV to determine its orientation under the coordinate frame of the first leader.Based on the orientation estimation,we then design a bearing-based formation control law to globally asymptotically track target moving formations.Finally,simulation results are provided to validate the proposed method,which show that the translation,scale and orientation of the formation can be flexibly controlled via two leaders.展开更多
This letter presents an image orientation estimation method which is based on a combination of two techniques: quadrature filtering and nonlinear diffusion. The quadrature filters are used to get the orientation tens...This letter presents an image orientation estimation method which is based on a combination of two techniques: quadrature filtering and nonlinear diffusion. The quadrature filters are used to get the orientation tensors for edges, then the orientation tensors are smoothed through nonlinear diffusion. Experimental resuits and analysis show the robustness of the proposed method.展开更多
This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images ...This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U.展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error b...An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.展开更多
Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It lea...Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.展开更多
Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It lead...Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.展开更多
Pedestrian protection has played an important role for driver assistance systems.Our aim is to develop a video based driver assistance system for the detection of the potentially dangerous situation between the vehicl...Pedestrian protection has played an important role for driver assistance systems.Our aim is to develop a video based driver assistance system for the detection of the potentially dangerous situation between the vehicle and pedestrian,in order to warn the driver.In this paper,we address the problem of detecting pedestrian in real-world scenes and estimation of the walking direction with a single camera from a moving vehicle.Considering all the available cues for predicting the possibility of collision is very important.The direction in which the pedestrian is facing is one of the most important cues predicting where the pedestrian may move in the future.So we first address the problem of sin-gle-frame pedestrian orientation estimation in real-world scenes.Then again,we estimate the pedes-trian walking direction using multi-frame based on the result of single-frame orientation estimation.We propose a three-step method:pedestrian detection for single-frame step,orientation estimation for single-frame step and walking direction estimation for multi-frame step.To evaluate the proposed method in its robustness and accuracy,the experiments have been performed between numbers of images which is highly challenging uncontrolled conditions in real world.It shows a significant per-formance improvement in octant orientation estimation of about 64% accuracy in the orientation es-timation step and achieved surprisingly good accuracy in estimating the walking direction against 212 targeted objects.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a ve...The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a very much essential task. This paper presents a systematic review of different models used for software cost estimation which includes algorithmic methods, non-algorithmic methods and learning-oriented methods. The models considered in this review include both the traditional and the recent approaches for software cost estimation. The main objective of this paper is to provide an overview of software cost estimation models and summarize their strengths, weakness, accuracy, amount of data needed, and validation techniques used. Our findings show, in general, neural network based models outperforms other cost estimation techniques. However, no one technique fits every problem and we recommend practitioners to search for the model that best fit their needs.展开更多
大多数康复训练系统使用深度摄像头获取骨骼点三维坐标,而普通摄像头所拍摄的二维图像由于缺少了Z轴坐标,人体与摄像头之间的朝向对二维图像中相似动作匹配有着较大的影响。针对这个问题,提出了一种新的带有方向特征的肢体角度计算方法...大多数康复训练系统使用深度摄像头获取骨骼点三维坐标,而普通摄像头所拍摄的二维图像由于缺少了Z轴坐标,人体与摄像头之间的朝向对二维图像中相似动作匹配有着较大的影响。针对这个问题,提出了一种新的带有方向特征的肢体角度计算方法,结合姿态估计算法提取骨骼点信息,并利用动态时间规整(Dynamic Time Warping,DTW)方法计算两个动作序列的距离。实验结果表明,该方法的匹配准确率较高,对二维空间上较相似的动作也能获得更好的识别效果。展开更多
在扩散磁共振成像中,传统多壳约束球面反卷积方法通常将白质微结构建模为各向异性,而灰质微结构建模为各向同性.然而,组织学和高分辨率扩散磁共振成像的研究表明,灰质中水分子的扩散过程具有明显的各向异性特征,因此传统约束球面反卷积...在扩散磁共振成像中,传统多壳约束球面反卷积方法通常将白质微结构建模为各向异性,而灰质微结构建模为各向同性.然而,组织学和高分辨率扩散磁共振成像的研究表明,灰质中水分子的扩散过程具有明显的各向异性特征,因此传统约束球面反卷积方法必不能准确地描述灰质微结构.针对这一问题,本文提出了一种基于体细胞和神经突密度成像(Soma And Neurite Density Imaging,SANDI)模型的灰质多壳约束球面反卷积方法,旨在更准确地揭示灰质微结构特性.利用神经元数据对胞体部分信号进行仿真,模拟灰质特有的信号模式,使用SANDI模型生成了灰质的信号以及相应的响应函数,并将其应用于真实大脑数据的灰质进行微结构重建.结果表明,该方法在提取灰质区域各向异性特征方面表现出色,提高了纤维方向估计的准确度.展开更多
The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction(MEE), is an essential requirement for a multi-target filter, whose key performance assessm...The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction(MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density(PHD) filter, implemented by the sequential Monte Carlo approach,affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori(EAP) estimator, namely the multi-EAP(MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accuracy.展开更多
A scheme for general purposed FDTD visual scientific computing software is introduced in this paper using object-oriented design (OOD) method. By abstracting the parameters of FDTD grids to an individual class and sep...A scheme for general purposed FDTD visual scientific computing software is introduced in this paper using object-oriented design (OOD) method. By abstracting the parameters of FDTD grids to an individual class and separating from the iteration procedure, the visual software can be adapted to more comprehensive computing problems. Real-time gray degree graphic and wave curve of the results can be achieved using DirectX technique. The special difference equation and data structure in dispersive medium are considered, and the peculiarity of parameters in perfectly matched layer are also discussed.展开更多
基金supported by the National Science and Technology Major Project,China(No.2017-V-0010-0060)the National Natural Science Foundation of China(No.51620105010,51805026,51675019)+1 种基金the National Basic Research Program of China(No.JCKY2018601C107)China Scholarship Council(No.201906020030).
文摘Most existing formation control approaches for Unmanned Aerial Vehicle(UAV)swarm assume that global position and global coordinate frame are directly available for each agent.To extend the application domain,this paper proposes a distributed bearing-based formation control scheme,without any reliance on global position or global coordinate frame.The interactions among UAVs are described by a directed topology with two-leader structure.To address the issue of unavailable global coordinate frame,we first present a distributed orientation estimation law for each UAV to determine its orientation under the coordinate frame of the first leader.Based on the orientation estimation,we then design a bearing-based formation control law to globally asymptotically track target moving formations.Finally,simulation results are provided to validate the proposed method,which show that the translation,scale and orientation of the formation can be flexibly controlled via two leaders.
文摘This letter presents an image orientation estimation method which is based on a combination of two techniques: quadrature filtering and nonlinear diffusion. The quadrature filters are used to get the orientation tensors for edges, then the orientation tensors are smoothed through nonlinear diffusion. Experimental resuits and analysis show the robustness of the proposed method.
基金funded by the Center for Unmanned Aircraft Systems(C-UAS)a National Science Foundation Industry/University Cooperative Research Center(I/UCRC)under NSF award Numbers IIP-1161036 and CNS-1650547along with significant contributions from C-UAS industry members。
文摘This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U.
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.
基金Project supported by the National Natural Science Foundation of China(No.10876100)
文摘Based on the concept of constitutive relation error along with the residual of both origin and dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed in this paper. It leads to high quality local error bounds in the problem of fracture mechanics simulation with extended finite element method (XFEM), which involves enrichment to solve a stress singularity in the crack. Since goal-oriented error estimation with enriched degrees of freedom gives us a chance to evaluate the XFEM simulation, the stress intensity factor calculated by two kinds of XFEM programs developed by ourselves and by commercial code ABAQUS are compared in this work. By comparing the reliability of the stress intensity factor calculation, the accuracy of two programs in different cases is evaluated and the source of error is discussed. A 2-dimensional XFEM example is given to illustrate the computational procedure.
基金Project supported by the National Natural Science Foundation of China (No. 10876100)
文摘Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality locM error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.
文摘Pedestrian protection has played an important role for driver assistance systems.Our aim is to develop a video based driver assistance system for the detection of the potentially dangerous situation between the vehicle and pedestrian,in order to warn the driver.In this paper,we address the problem of detecting pedestrian in real-world scenes and estimation of the walking direction with a single camera from a moving vehicle.Considering all the available cues for predicting the possibility of collision is very important.The direction in which the pedestrian is facing is one of the most important cues predicting where the pedestrian may move in the future.So we first address the problem of sin-gle-frame pedestrian orientation estimation in real-world scenes.Then again,we estimate the pedes-trian walking direction using multi-frame based on the result of single-frame orientation estimation.We propose a three-step method:pedestrian detection for single-frame step,orientation estimation for single-frame step and walking direction estimation for multi-frame step.To evaluate the proposed method in its robustness and accuracy,the experiments have been performed between numbers of images which is highly challenging uncontrolled conditions in real world.It shows a significant per-formance improvement in octant orientation estimation of about 64% accuracy in the orientation es-timation step and achieved surprisingly good accuracy in estimating the walking direction against 212 targeted objects.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
文摘The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a very much essential task. This paper presents a systematic review of different models used for software cost estimation which includes algorithmic methods, non-algorithmic methods and learning-oriented methods. The models considered in this review include both the traditional and the recent approaches for software cost estimation. The main objective of this paper is to provide an overview of software cost estimation models and summarize their strengths, weakness, accuracy, amount of data needed, and validation techniques used. Our findings show, in general, neural network based models outperforms other cost estimation techniques. However, no one technique fits every problem and we recommend practitioners to search for the model that best fit their needs.
文摘大多数康复训练系统使用深度摄像头获取骨骼点三维坐标,而普通摄像头所拍摄的二维图像由于缺少了Z轴坐标,人体与摄像头之间的朝向对二维图像中相似动作匹配有着较大的影响。针对这个问题,提出了一种新的带有方向特征的肢体角度计算方法,结合姿态估计算法提取骨骼点信息,并利用动态时间规整(Dynamic Time Warping,DTW)方法计算两个动作序列的距离。实验结果表明,该方法的匹配准确率较高,对二维空间上较相似的动作也能获得更好的识别效果。
文摘在扩散磁共振成像中,传统多壳约束球面反卷积方法通常将白质微结构建模为各向异性,而灰质微结构建模为各向同性.然而,组织学和高分辨率扩散磁共振成像的研究表明,灰质中水分子的扩散过程具有明显的各向异性特征,因此传统约束球面反卷积方法必不能准确地描述灰质微结构.针对这一问题,本文提出了一种基于体细胞和神经突密度成像(Soma And Neurite Density Imaging,SANDI)模型的灰质多壳约束球面反卷积方法,旨在更准确地揭示灰质微结构特性.利用神经元数据对胞体部分信号进行仿真,模拟灰质特有的信号模式,使用SANDI模型生成了灰质的信号以及相应的响应函数,并将其应用于真实大脑数据的灰质进行微结构重建.结果表明,该方法在提取灰质区域各向异性特征方面表现出色,提高了纤维方向估计的准确度.
基金partly supported by the Marie SklodowskaCurie Individual Fellowship (No. 709267)under the European Union’s Framework Programme for ResearchInnovation Horizon 2020 and National Natural Science Foundation of China (No. 51475383)
文摘The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction(MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density(PHD) filter, implemented by the sequential Monte Carlo approach,affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori(EAP) estimator, namely the multi-EAP(MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accuracy.
基金This project was supported by the National Natural Science Foundation (No. 69831020).
文摘A scheme for general purposed FDTD visual scientific computing software is introduced in this paper using object-oriented design (OOD) method. By abstracting the parameters of FDTD grids to an individual class and separating from the iteration procedure, the visual software can be adapted to more comprehensive computing problems. Real-time gray degree graphic and wave curve of the results can be achieved using DirectX technique. The special difference equation and data structure in dispersive medium are considered, and the peculiarity of parameters in perfectly matched layer are also discussed.