期刊文献+
共找到412篇文章
< 1 2 21 >
每页显示 20 50 100
Real-Time Front Vehicle Detection Algorithm Based on Local Feature Tracking Method 被引量:1
1
作者 Jae-hyoung YU Young-joon HAN Hern-soo HAHN 《Journal of Measurement Science and Instrumentation》 CAS 2011年第3期244-246,共3页
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of... This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system. 展开更多
关键词 vehicle detection object tracking real-time algorithm Haarlike edge detection
在线阅读 下载PDF
METHOD OF MULTI-TARGET TRACKING IN WIDE AREA SURVEILLANCE AIRBORNE RADAR SYSTEM BASING ON CLUSTERING ANALYSIS 被引量:3
2
作者 Wu Kun Zhao Fengjun +2 位作者 Hui Zhou Zheng Shichao Zheng Mingjie 《Journal of Electronics(China)》 2014年第3期208-213,共6页
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B... This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method. 展开更多
关键词 Airborne radar Wide Area Surveillance(WAS) Moving target detect multi-target tracking(MTT)
在线阅读 下载PDF
Novel Real-Time Seam Tracking Algorithm Based on Vector Angle and Least Square Method 被引量:1
3
作者 Guanhao Liang Qingsheng Luo +1 位作者 Zhuo Ge Xiaoqing Guan 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期150-157,共8页
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i... Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning. 展开更多
关键词 real-time seam tracking real-time seam detection laser scanner vector angle leastsquare method algorithm research
在线阅读 下载PDF
Research on Vehicle Tracking Method Based on YOLOv8 and Adaptive Kalman Filtering: Integrating SVM Dynamic Selection and Error Feedback Mechanism
4
作者 Liping Zheng Hao Gou +1 位作者 Kaiwen Xiao Moran Qiu 《Open Journal of Applied Sciences》 2024年第12期3569-3588,共20页
Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenar... Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments. 展开更多
关键词 multi-target tracking YOLOv8-Based detection Adaptive Filtering Support Vector Machine Error Feedback Mechanism
在线阅读 下载PDF
Methods and Means for Small Dynamic Objects Recognition and Tracking 被引量:1
5
作者 Dmytro Kushnir 《Computers, Materials & Continua》 SCIE EI 2022年第11期3649-3665,共17页
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects... A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools. 展开更多
关键词 Object detection artificial intelligence object tracking object counting small movable objects ants tracking ants recognition YOLO_AR Yolov4 Hungarian algorithm k-d tree algorithm MOT benchmark image labeling movement prediction
在线阅读 下载PDF
Tracking a Time-Varying Number of Targets with Radio-Frequency Tomography
6
作者 肖贺 刘航 +1 位作者 徐俊 门爱东 《Transactions of Tianjin University》 EI CAS 2015年第4期356-365,共10页
Radio-frequency(RF) tomography is an emerging technology which derives targets location information by analyzing the changes of received signal strength(RSS) in wireless links. This paper presents and evaluates a nove... Radio-frequency(RF) tomography is an emerging technology which derives targets location information by analyzing the changes of received signal strength(RSS) in wireless links. This paper presents and evaluates a novel RF tomography system which is capable of detecting and tracking a time-varying number of targets in a cluttered indoor environment. The system incorporates an observation model based on RSS attenuation histogram and a multi-target tracking-by-detection filtering approach based on probability hypothesis density(PHD) filter. In addition, the sequential Monte Carlo method is applied to implement the multi-target filtering. To evaluate the tracking system, the experiments involving up to 3 targets were performed within an obstructed indoor area of 70 m2. The experimental results indicate that the proposed tracking system is capable of tracking a time-varying number of targets. 展开更多
关键词 RADIO-FREQUENCY TOMOGRAPHY multi-target tracking wireless sensor networks particle filtering trackingby detection random finite SETS
在线阅读 下载PDF
Research on Face Tracking in Community Monitoring System
7
作者 Shuang Liu 《International Journal of Technology Management》 2013年第1期64-66,共3页
This paper proposes a block Mean-Shift algorithm based on target real-time update and LBP texture features, through the target update improves the accuracy of target tracking, enhances the local character of the targe... This paper proposes a block Mean-Shift algorithm based on target real-time update and LBP texture features, through the target update improves the accuracy of target tracking, enhances the local character of the target through the target block, so as to improve the robustness of algorithm based on skin color backgrounds. And then analyze the Mean-Shift algorithm cannot recover quickly lost target tracking defects, and its improvement by combining the frame difference method. 展开更多
关键词 face detection face tracking the improved Mean-Shift algorithm
在线阅读 下载PDF
基于改进YOLOv8-DeepSORT的城市交叉口交通冲突自动检测方法
8
作者 陈昱光 胡山 +2 位作者 林弘灏 黄金涛 郭凤香 《重庆交通大学学报(自然科学版)》 北大核心 2025年第10期35-42,共8页
为精确识别城市交叉口机动车的冲突情况,在改进YOLOv8目标检测和DeepSORT轨迹追踪算法的基础上,提出了一种新的交通冲突视频自动检测方法。通过添加小目标检测层、加入注意力机制及优化损失函数,提升对小尺度及模糊车辆目标的检测性能;... 为精确识别城市交叉口机动车的冲突情况,在改进YOLOv8目标检测和DeepSORT轨迹追踪算法的基础上,提出了一种新的交通冲突视频自动检测方法。通过添加小目标检测层、加入注意力机制及优化损失函数,提升对小尺度及模糊车辆目标的检测性能;采用扩展卡尔曼滤波器(EKF)处理非线性运动轨迹,并利用三次样条插值填补全缺失轨迹,提高轨迹精度;基于碰撞时间(TTC)对指标冲突进行量化。研究结果表明:相较于YOLOv8和YOLOv5算法,文中改进算法的训练精度提升了6.66%、8.94%,召回率提升了6.61%、13.30%;在跟踪性能上,相较于YOLOv8+DeepSORT和YOLOv5+DeepSORT,文中改进算法的跟踪精度提升了4.58%、7.10%,跟踪成功度提升3.82%、9.49%;基于ROC曲线的冲突检测结果,文中改进算法的AUC值达到0.854,优于其它方法。 展开更多
关键词 交通工程 城市交叉口 多目标检测追踪算法 交通冲突 视频识别技术
在线阅读 下载PDF
综合运动前景与运动行人的智能视频双重监测算法设计
9
作者 刘彦琴 李杰 李嘉仁 《自动化与仪器仪表》 2025年第2期5-9,共5页
针对传统监控视频存在目标尺寸小、行人被遮挡导致检测精度和跟踪效果不佳的问题,提出一种综合运动前景与运动行人的智能视频双重监测算法。首先,基于YOLOv5算法,构建一个结合协同注意力机制的行人检测模型;然后以行人检测模型作为检测... 针对传统监控视频存在目标尺寸小、行人被遮挡导致检测精度和跟踪效果不佳的问题,提出一种综合运动前景与运动行人的智能视频双重监测算法。首先,基于YOLOv5算法,构建一个结合协同注意力机制的行人检测模型;然后以行人检测模型作为检测器,引入DeepSORT的行人跟踪算法,并在该算法基础上加入GhostNet-cot重识别网络和抗遮挡策略;最后将改进YOLOv5检测模型与增强数据关联的DeepSORT跟踪模型相结合,搭建一个综合运动前景与运动行人的智能视频双重监测模型,通过该模型实现运动行人准确检测和跟踪。实验结果表明,本模型的MOTA、HOTA、IDFI指标分别取值为48.86%、53.35%和56.66%,均高于传统的DeepSort模型、GAN-RNN模型和ECA-BIFPN模型。且本模型的IDSW和参数量分别为204和9.2 M,明显低于另外三种模型。综合分析可知,本模型可实现运动行人的抗遮挡,基于监控视频的行人检测跟踪精度明显提高,可实现智能体育视频的双重监测。 展开更多
关键词 运动行人检测 YOLOv5算法 DeepSORT 目标跟踪 监控视频
原文传递
基于深度学习模型联合的长视频行为数据统计
10
作者 魏英姿 杨文静 《通信与信息技术》 2025年第5期44-48,共5页
监控长视频数据分析是城市智能化进步的有效手段,采用将YOLO目标检测模型、DeepSort目标跟踪算法以及SlowFast行为识别模型相结合的方法,提取并分析长视频数据中行人行为特征。联合模型采用双通道设计策略,分别对视频帧进行特征提取,采... 监控长视频数据分析是城市智能化进步的有效手段,采用将YOLO目标检测模型、DeepSort目标跟踪算法以及SlowFast行为识别模型相结合的方法,提取并分析长视频数据中行人行为特征。联合模型采用双通道设计策略,分别对视频帧进行特征提取,采用动态检测头的YOLO目标检测模型,并在SlowFast行为识别模型中融入注意力机制,以增强各特征元素间的关联性,确保帧信息得以充分保留。在行为分析判别过程中,采用独热编码方法,再经过主成分分析(PCA)方法进行分析,实验结果显示该方法在处理长视频行为数据方面的有效性。 展开更多
关键词 YOLO目标检测模型 DeepSort跟踪算法 SlowFast行为识别 主成分分析
在线阅读 下载PDF
基于视觉的不停机风力发电机的叶片自动追踪方法
11
作者 田航 陈果 +2 位作者 赵辉 陶卫 吕娜 《现代电子技术》 北大核心 2025年第21期177-186,共10页
为了避免风力发电机叶片损伤导致的相应安全问题与经济损失等,对风力发电机组叶片进行损伤检测是必要的。现有基于视觉的检测方法通过获取叶片图像与损伤进行识别,最终实现叶片表面损伤检测,这些方法需要风力发电机保持停机状态来实现... 为了避免风力发电机叶片损伤导致的相应安全问题与经济损失等,对风力发电机组叶片进行损伤检测是必要的。现有基于视觉的检测方法通过获取叶片图像与损伤进行识别,最终实现叶片表面损伤检测,这些方法需要风力发电机保持停机状态来实现叶片图像采集,停机期间会导致经济损失。文中针对不停机风力发电机提出一种基于视觉的动态风电叶片自动追踪方法,包括转速检测、目标识别以及控制算法。在转速检测部分采用图像相关法(CORR2)和快速傅里叶变换(FFT)方法,并进行了仿真实验和风力机实验。实验结果验证了CORR2方法具有良好的抗噪性能,转速检测误差小于8%,实现了转速检测。在叶片目标识别部分,使用叶片目标图像与背景图像差分法,并采用阈值分割和连通域的方法进行风叶模型实验,实现了叶片目标的识别和叶片目标中心位置的获取。在控制算法部分,基于叶片目标中心位置和叶片旋转周期进行风叶模型实验,实现了叶片目标定位于图像中心附近,最终实现了动态叶片的自动追踪,验证了所提方法的有效性。 展开更多
关键词 不停机 风力发电机 转速检测 叶片自动追踪 叶片目标识别 控制算法
在线阅读 下载PDF
基于航迹关联的多卫星接续阶段精确跟踪方法
12
作者 宋国锋 孙晓静 +1 位作者 郝启凯 邢雪辉 《火炮发射与控制学报》 北大核心 2025年第3期107-114,共8页
多星组网探测具有目标跟踪距离远、跟踪精度高等优点,但是在接续探测过程中,可能会造成目标的观测缺失,发生航迹断裂的现象,接替卫星存在初始跟踪精度较低的问题。为解决接续探测阶段面临的目标跟踪问题,提出了基于航迹关联的多卫星接... 多星组网探测具有目标跟踪距离远、跟踪精度高等优点,但是在接续探测过程中,可能会造成目标的观测缺失,发生航迹断裂的现象,接替卫星存在初始跟踪精度较低的问题。为解决接续探测阶段面临的目标跟踪问题,提出了基于航迹关联的多卫星接续阶段精确跟踪方法,针对航迹断裂导致的目标丢失的问题,给出了一种基于状态密度估计的航迹关联算法,利用卡尔曼滤波对星载雷达的观测数据预处理,通过假设检验和二维分配对断裂航迹进行关联与配对。针对接替卫星在初始阶段的目标跟踪精度较低的问题,在航迹关联的基础上,利用凸组合算法,将终止航迹推算出的预测信息与起始航迹的观测相结合,实现对目标的精确跟踪。 展开更多
关键词 星载雷达 接续探测 卡尔曼滤波 航迹关联 状态密度估计 凸组合算法
在线阅读 下载PDF
基于YOLOv5和DeepSort算法的工程车辆识别与多目标跟踪实现 被引量:2
13
作者 孙长虹 孙洪亮 李轩 《科学技术创新》 2025年第4期111-114,共4页
本研究聚焦于传统目标检测技术与基于深度神经网络的工程车辆检测策略的对比分析。通过借助有效技术手段,采用降噪、增强及边缘检测的方式,对图像的质量进行有效优化。为了确保工程车辆检测过程的专业性与高精度,我们借助YOLOv5算法对... 本研究聚焦于传统目标检测技术与基于深度神经网络的工程车辆检测策略的对比分析。通过借助有效技术手段,采用降噪、增强及边缘检测的方式,对图像的质量进行有效优化。为了确保工程车辆检测过程的专业性与高精度,我们借助YOLOv5算法对其进行了处理,该算法的运用可以进一步提高处理速度。对于检测时容易出现的目标遗漏与预测框定位不准确情况,我们借助DeepSORT算法,通过全面的整合对检测目标进行了追踪预测。DeepSORT通过卡尔曼滤波进行数据估计,能实现高效的连续跟踪。为应对拍摄设备晃动及车辆变速行驶引发的目标身份频繁更迭挑战,我们创新性地采用了一种改进的GIoU计算方法。 展开更多
关键词 YOLOv5算法 工程车辆检测 DeepSORT算法 多目标跟踪 实时检测
在线阅读 下载PDF
一种分布式的稳健子空间跟踪算法
14
作者 周学睿 戴旭初 《通信技术》 2025年第2期128-136,共9页
在大数据时代,集中式算法面临着计算量大、存储代价高和数据隐私性难以保证等挑战,而分布式算法是应对这些挑战的一个重要途径。另外,高维观测数据中低维子空间的估计和跟踪是数据处理领域的一个基础性算法,有着广泛的应用价值。但是,... 在大数据时代,集中式算法面临着计算量大、存储代价高和数据隐私性难以保证等挑战,而分布式算法是应对这些挑战的一个重要途径。另外,高维观测数据中低维子空间的估计和跟踪是数据处理领域的一个基础性算法,有着广泛的应用价值。但是,现有的分布式子空间估计和跟踪算法的性能对一些实际的非理想因素比较敏感。为此,首先确定了节点间的共识量;其次设计了一个稳健共识算法,能够在非同步且有故障的分布式网络中实现信息共识;再次利用软投影思想与信号子空间匹配的度量准则,设计了一个分布式的稳健子空间跟踪算法;最后通过仿真实验说明了算法能够在有异常的环境下跟踪变化的子空间并收敛,且性能与集中式算法差距不大。 展开更多
关键词 共识算法 子空间跟踪 稀疏异常检测 稳健的分布式算法
在线阅读 下载PDF
基于OpenCV的嵌入式平台物体跟踪系统设计 被引量:1
15
作者 张天翼 《仪表技术》 2025年第4期1-4,19,共5页
随着物联网和嵌入式系统的快速发展,低成本、便携式的运动检测与跟踪系统在安防监控、智能家居及工业自动化等领域展现出重要的应用价值。基于树莓派嵌入式平台与OpenCV计算机视觉库,设计并实现了一套高效的运动检测与跟踪系统。阐述了... 随着物联网和嵌入式系统的快速发展,低成本、便携式的运动检测与跟踪系统在安防监控、智能家居及工业自动化等领域展现出重要的应用价值。基于树莓派嵌入式平台与OpenCV计算机视觉库,设计并实现了一套高效的运动检测与跟踪系统。阐述了系统的整体架构与嵌入式开发框架;结合OpenCV的图像处理算法,详细分析了运动检测与跟踪的核心技术,并通过数学公式推导验证了算法的有效性。实验结果表明,该系统能够实时、准确地完成运动目标的检测与跟踪任务,为相关领域的应用提供了可行的技术方案。 展开更多
关键词 嵌入式系统 树莓派 运动检测 跟踪算法
原文传递
基于双向滤波和Camshift算法的红外激光图像弱小运动目标智能跟踪检测
16
作者 张丽 王小宇 《红外技术》 北大核心 2025年第9期1160-1166,共7页
红外激光图像中弱小运动目标特征帧差很小,当前目标跟踪算法面对弱小目标的可能位置和运动轨迹混乱,检测失真。提出基于双向滤波和Camshift算法的红外激光图像弱小运动目标智能跟踪检测方法。利用双向滤波算法结合双向扩散和冲击滤波方... 红外激光图像中弱小运动目标特征帧差很小,当前目标跟踪算法面对弱小目标的可能位置和运动轨迹混乱,检测失真。提出基于双向滤波和Camshift算法的红外激光图像弱小运动目标智能跟踪检测方法。利用双向滤波算法结合双向扩散和冲击滤波方法,增强红外激光图像。选取Camshift算法,利用HSV颜色模型分析增强后红外激光图像的颜色概率密度分布特征,提取红外激光图像中弱小目标的位置和形状特征信息,完成弱小运动目标轮廓检测。依据弱小运动目标轮廓检测结果,基于全卷积Siamese网络,在红外激光视频序列中实现运动目标的连续跟踪。实验结果表明,该方法可以精准检测红外激光图像中的弱小运动目标,精准跟踪目标运动轨迹,满足跟踪实时性需求。 展开更多
关键词 双向滤波 CAMSHIFT算法 红外激光图像 弱小运动目标 智能跟踪检测 Siamese网络
在线阅读 下载PDF
深度学习算法下船舶航行轨迹异常行为检测方法
17
作者 冀娜 胡磊 《舰船科学技术》 北大核心 2025年第15期164-167,共4页
针对船舶航行轨迹数据因时间序列特征导致的不确定性,难以准确捕捉航行轨迹数据的关键信息,影响最终检测精度的问题,提出深度学习算法下船舶航行轨迹异常行为检测方法。依据船舶自动识别系统(AIS)获取船舶航行轨迹数据并实施预处理后,提... 针对船舶航行轨迹数据因时间序列特征导致的不确定性,难以准确捕捉航行轨迹数据的关键信息,影响最终检测精度的问题,提出深度学习算法下船舶航行轨迹异常行为检测方法。依据船舶自动识别系统(AIS)获取船舶航行轨迹数据并实施预处理后,提取AIS船舶航行轨迹的时间序列特征。将AIS船舶航行轨迹特征输入门控循环单元循环神经网络深度学习模型进行处理,依据更新门、重置门处理,最终实现船舶航行轨迹异常行为检测。实验证明,该方法在不同种类船舶类型混合情况下,检测偏差均小于1.1%,时效性均能够保证在97.5%以上,能够实时监控船舶航行状态,预警异常行为,降低船舶发生事故风险,推动海上交通管理智能化发展。 展开更多
关键词 深度学习算法 船舶航行 轨迹异常检测 船舶自动识别系统 门控循环单元
在线阅读 下载PDF
基于多无人机协作与联邦学习的目标检测与跟踪系统研究
18
作者 裴佳明 孔伟力 +1 位作者 于长东 王鲁昆 《智能系统学报》 北大核心 2025年第5期1158-1166,共9页
本文提出了一种多无人机协作系统,旨在在各种环境中实现高效且可靠的目标检测与跟踪。该系统利用先进的协调算法和联邦学习技术来提升性能,确保无人机之间的高覆盖率、低冗余度和有效的任务分配。通过大量仿真实验和实证实验验证了系统... 本文提出了一种多无人机协作系统,旨在在各种环境中实现高效且可靠的目标检测与跟踪。该系统利用先进的协调算法和联邦学习技术来提升性能,确保无人机之间的高覆盖率、低冗余度和有效的任务分配。通过大量仿真实验和实证实验验证了系统在简单与复杂场景(如开阔地与密集的城市区域、夜间与雨天等挑战性条件下)的强大性能。文章使用覆盖率、冗余率、任务分配均衡性、响应时间和跟踪连续性等关键指标来评估系统的有效性。结果表明,系统在较简单的环境中表现优异,同时在更具挑战性的条件下也能保持稳健的性能,但仍存在进一步优化的空间。本文最后讨论了系统的部署策略以及未来工作的方向,特别是在动态和GPS信号缺失环境下提高系统的适应性。 展开更多
关键词 无人机 联邦学习 目标检测 通信 多无人机协作系统 目标跟踪 协作系统 协调算法 神经网络
在线阅读 下载PDF
引入改进YOLOv4算法的铁路轨道形变智能检测技术研究
19
作者 王芳 《自动化与仪器仪表》 2025年第1期143-147,共5页
随着国家城市化建设的加快,铁路运输在城市化发展中扮演着重要的角色,为了防止铁轨形变带来不必要损失。研究针对这些问题,构建了改进YOLOv4算法的铁轨形变检测模型。首先在YOLOv4中构建模型,然后在此基础上进行优化,最后利用数据集训... 随着国家城市化建设的加快,铁路运输在城市化发展中扮演着重要的角色,为了防止铁轨形变带来不必要损失。研究针对这些问题,构建了改进YOLOv4算法的铁轨形变检测模型。首先在YOLOv4中构建模型,然后在此基础上进行优化,最后利用数据集训练。将模型与卷积神经网络(Convolutional Neural Networks,CNN)、深度置信网络(Deep Belief Nets,DBN)进行误差对比时,模型方法的误差在[0.018,-0.019]之间,准确度最高。同时利用YOLOv4和MobileNet三代改进的YOLOv4模型去验证所选用模型的可靠性。其中V3-YOLOv4的F1平均值为64.12%;迭代训练中每次迭代耗时为前五十次3 min46 s,后五十次4 min16 s,在四种模型中均为最佳。这说明研究提出的模型在轨道形变智能检测中具有较高准确性的同时,还能够提高检测的效率。为铁轨形变检测提供了一种新的思路。 展开更多
关键词 改进YOLOv4算法 铁路 轨道形变 智能检测
原文传递
基于改进的YOLOv8轻量化疲劳驾驶检测
20
作者 郭傲翔 陈亚江 《软件工程》 2025年第11期11-15,46,共6页
针对面部检测精度不足、车载终端算力限制等问题,提出一种改进YOLOv8的检测算法。首先将MobileNetV3-Small作为主干网络,实现模型轻量化;引入SE(Squeeze-and-Excitation)注意力机制与跨尺度融合模块(Cross-Scale Feature Fusion Module,... 针对面部检测精度不足、车载终端算力限制等问题,提出一种改进YOLOv8的检测算法。首先将MobileNetV3-Small作为主干网络,实现模型轻量化;引入SE(Squeeze-and-Excitation)注意力机制与跨尺度融合模块(Cross-Scale Feature Fusion Module,CCFM),增强对小目标的检测能力;结合BoT-SORT算法对面部特征进行实时ID追踪;再融合Dlib关键点,根据单位时间内打哈欠数量、点头数、闭眼时间以及PERCLOS值综合判定疲劳。实验结果表明:相比原YOLOv8算法,改进算法体积降低32.3%,平均精度均值(mAP50)和查全率分别提升至97.7%和96.1%。验证了该算法对面部特征检测的鲁棒性和可靠性。 展开更多
关键词 YOLOv8 疲劳驾驶检测 轻量化 BoT-SORT跟踪算法
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部