To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develo...A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.展开更多
In order to prevent the attacker from breaking through the blockade of the interception,deploying multiple Unmanned Aerial Vehicle(UAV)swarms on the interception line is a new combat style.To solve the optimal deploym...In order to prevent the attacker from breaking through the blockade of the interception,deploying multiple Unmanned Aerial Vehicle(UAV)swarms on the interception line is a new combat style.To solve the optimal deployment of swarm positions in the cooperative interception,an optimal deployment optimization model is presented by minimizing the penetration zones'area and the analytical expression of the optimal deployment positions is deduced.Firstly,from the view of the attackers breaking through the interception line,the situations of vertical penetration and oblique penetration are analyzed respectively,and the mathematical models of penetration zones are obtained under the condition of a single UAV swarm and multiple UAV swarms.Secondly,based on the optimization goal of minimizing the penetration area,the optimal deployment optimization model for swarm positions is proposed,and the analytical solution of the optimal deployment is solved by using the convex programming theory.Finally,the proposed optimal deployment is compared with the uniform deployment and random deployment to verify the validity of the theoretical analysis.展开更多
Cooperative interception of the target with strong maneuverability by multiple missiles with weak maneuverability in the three-dimensional nonlinear model is studied.Firstly,the three-dimensional nonlinear model of co...Cooperative interception of the target with strong maneuverability by multiple missiles with weak maneuverability in the three-dimensional nonlinear model is studied.Firstly,the three-dimensional nonlinear model of cooperative guidance is established.The three-dimensional reachable region is represented composed of lateral acceleration and longitudinal acceleration in the two-dimensional coordinate system.Secondly,the problem of the multiple missile’s reachable coverage area is transformed into the problem of cooperative coverage.A cooperative coverage strategy is proposed and an algorithm for quickly calculating the number of required missiles is designed.Then,the guidance law based on the cooperative coverage strategy is proposed,and it is proved that cooperative interception of the target can be achieved under the acceleration limit.Moreover,the relations among the number of missiles,the initial array position of terminal guidance and the coverage area of the target’s large maneuver are analyzed.The dynamic adjustment strategy of guidance parameters is proposed to reduce the guidance error.Finally,simulation results show that multiple missiles with low maneuverability can achieve effective interception of target with strong maneuverability through the proposed cooperative strategy and cooperative guidance method.展开更多
The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method ...The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method based on neighborhood optimal control is adopted.Then,when intercepting the strong maneuvering targets,the single interceptor is insufficient in maneuverability,therefore,an on-line multiple trajectories generation algorithm is proposed,which uses the multiple interceptors intercept area(IIA)to cover the target's predicted intercept area(PIA)cooperatively.Through optimizing the interceptors'zero control terminal location,the trajectories are generated on-line by using the neighborhood optimal control method,these trajectories could make the IIA maximally cover the PIA.The simulation results show that the proposed method can greatly improve the interception probability,which provides a reference for the collaborative interception of multiple interceptors.展开更多
This paper is concerned with a scenario of multiple attackers trying to intercept a target with active defense.Three types of agents are considered in the guidance:The multiple attackers,the target and the defender,wh...This paper is concerned with a scenario of multiple attackers trying to intercept a target with active defense.Three types of agents are considered in the guidance:The multiple attackers,the target and the defender,where the attackers aim to pursuit the target from different directions and evade from the defender simultaneously.The guidance engagement is formulated in the framework of a zero-sum two-person differential game between the two opposing teams,such that the measurements on the maneuver of the target or estimations on the defending strategy of the defender can be absent.Cooperation of the attackers resides in two aspects:redundant interception under the threat of the defender and the relative intercept geometry with the target.The miss distances,the relative intercept angle errors and the costs of the agents are combined into a single performance index of the game.Such formulation enables a unitary approach to the design of guidance laws for the agents.To minimize the control efforts and miss distances for the attackers,an optimization method is proposed to find the best anticipated miss distances to the defender under the constraint that the defender is endowed with a capture radius.Numerical simulations with two cases are conducted to illustrate the effectiveness of the proposed cooperative guidance law.展开更多
This paper investigates a cooperative strategy for protecting an aerial target.The problem is solved as a game among four players(a target,two defenders,and a missile).In this scenario,the target launches two defend...This paper investigates a cooperative strategy for protecting an aerial target.The problem is solved as a game among four players(a target,two defenders,and a missile).In this scenario,the target launches two defenders(defender-1 and defender-2)simultaneously,to establish a oneway cooperation system(OCS)against an attacking missile.A new optimal evasion strategy for the target is also derived.During the engagement,the target takes into account the reaction of the attacking missile,and guides defender-1 to the interception point by receiving information from defender-1.Depending on the control effort of the target,defender-2 can choose appropriate launch conditions and use very limited maneuvering capability to intercept the missile.For adversaries with first-order dynamics,simulation results show that the OCS allows two defenders to intercept the missile.During the engagement,even if one defender or communication channel is broken,the OCS still allows an interception to be made,thus increasing the target’s survivability.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the c...This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the conventionally used predicted impact point based mid-course guidance and seeker acquisition. Secondly, in order to optimally estimate and predict the target trajectory information, the interacting multiple model(IMM) algorithm is used with the constant velocity(CV) model, the constant acceleration(CA) model and the Singer model serving as the model set. The target states are described with the probability density function(PDF) based on the IMM prediction. Thirdly, the interceptor seeker target acquisition model is established which considers the blur edge region of the field of view. The cooperative target acquisition algorithm is designed by maximizing the interceptor seekers cooperative coverage of the target high probability region(HPR). Finally, digital simulations prove the effectiveness of the proposed method and reveal that the real challenge in the hypersonic target acquisition is the poor trajectory prediction accuracy which may further result to the unsteadiness of the interceptor trajectories.展开更多
为了优化单发多收协同雷达(single-transmitter multi-receiver cooperative radar,SMCR)探测系统的低截获概率(low probability of interception,LPI),利用SMCR目标探测的截获因子构造优化目标函数。首先,在二维平面上描述SMCR目标探...为了优化单发多收协同雷达(single-transmitter multi-receiver cooperative radar,SMCR)探测系统的低截获概率(low probability of interception,LPI),利用SMCR目标探测的截获因子构造优化目标函数。首先,在二维平面上描述SMCR目标探测场景,分析探测区域内接收机队列的接收增益及其近似估计方法。然后,针对目标位置先验已知情况,建立SMCR系统的接收机队列优化模型,分析模型解集。最后,针对目标搜索区域先验已知情况,从多个维度仿真分析接收机队列的LPI特性。仿真结果表明,针对目标位置或目标搜索区域先验已知的SMCR探测场景,接收机队列的队形设计有利于改善系统的LPI性能。针对目标位置已知的实测数据定性说明了所提方法仿真结果的合理性。展开更多
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the National Natural Science Foundation of China(Grant No.62203362)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-QN-0569)。
文摘A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.
文摘In order to prevent the attacker from breaking through the blockade of the interception,deploying multiple Unmanned Aerial Vehicle(UAV)swarms on the interception line is a new combat style.To solve the optimal deployment of swarm positions in the cooperative interception,an optimal deployment optimization model is presented by minimizing the penetration zones'area and the analytical expression of the optimal deployment positions is deduced.Firstly,from the view of the attackers breaking through the interception line,the situations of vertical penetration and oblique penetration are analyzed respectively,and the mathematical models of penetration zones are obtained under the condition of a single UAV swarm and multiple UAV swarms.Secondly,based on the optimization goal of minimizing the penetration area,the optimal deployment optimization model for swarm positions is proposed,and the analytical solution of the optimal deployment is solved by using the convex programming theory.Finally,the proposed optimal deployment is compared with the uniform deployment and random deployment to verify the validity of the theoretical analysis.
基金supported by the Science and Technology Innovation 2030-Key Project of‘‘New Generation Artificial Intelligence”,China(No.2020AAA0108204)the National Natural Science Foundation of China(Nos.61922008,61973013,61873011,61803014)+4 种基金the Innovation Zone Project,China(No.18-163-00-TS-001-001-34)the Defense Industrial TechnologyDevelopmentProgram,China(No.JCKY2019601C106)the Beijing Natural Science Foundation(No.4182035the Special Research Project of Chinese Civil Aircraft,China National Postdoctoral Program for Innovative Talents(No.BX20200034)Project funded by China Postdoctoral Science Foundation(No.2020 M680297)。
文摘Cooperative interception of the target with strong maneuverability by multiple missiles with weak maneuverability in the three-dimensional nonlinear model is studied.Firstly,the three-dimensional nonlinear model of cooperative guidance is established.The three-dimensional reachable region is represented composed of lateral acceleration and longitudinal acceleration in the two-dimensional coordinate system.Secondly,the problem of the multiple missile’s reachable coverage area is transformed into the problem of cooperative coverage.A cooperative coverage strategy is proposed and an algorithm for quickly calculating the number of required missiles is designed.Then,the guidance law based on the cooperative coverage strategy is proposed,and it is proved that cooperative interception of the target can be achieved under the acceleration limit.Moreover,the relations among the number of missiles,the initial array position of terminal guidance and the coverage area of the target’s large maneuver are analyzed.The dynamic adjustment strategy of guidance parameters is proposed to reduce the guidance error.Finally,simulation results show that multiple missiles with low maneuverability can achieve effective interception of target with strong maneuverability through the proposed cooperative strategy and cooperative guidance method.
基金supported by the National Natural Science Foundation of China(61873278)。
文摘The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method based on neighborhood optimal control is adopted.Then,when intercepting the strong maneuvering targets,the single interceptor is insufficient in maneuverability,therefore,an on-line multiple trajectories generation algorithm is proposed,which uses the multiple interceptors intercept area(IIA)to cover the target's predicted intercept area(PIA)cooperatively.Through optimizing the interceptors'zero control terminal location,the trajectories are generated on-line by using the neighborhood optimal control method,these trajectories could make the IIA maximally cover the PIA.The simulation results show that the proposed method can greatly improve the interception probability,which provides a reference for the collaborative interception of multiple interceptors.
基金supported by the Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence”,China(No.2020AAA0108200)the National Natural Science Foundation of China(Nos.61873011,61922008,61973013 and 61803014)+3 种基金the Defense Industrial Technology Development Program,China(No.JCKY2019601C106)the Innovation Zone Project,China(No.18-163-00-TS-001-00134)the Foundation Strengthening Program Technology Field Fund,China(No.2019-JCJQ-JJ-243)the Fund from Key Laboratory of Dependable Service Computing in Cyber Physical Society,China(No.CPSDSC202001)。
文摘This paper is concerned with a scenario of multiple attackers trying to intercept a target with active defense.Three types of agents are considered in the guidance:The multiple attackers,the target and the defender,where the attackers aim to pursuit the target from different directions and evade from the defender simultaneously.The guidance engagement is formulated in the framework of a zero-sum two-person differential game between the two opposing teams,such that the measurements on the maneuver of the target or estimations on the defending strategy of the defender can be absent.Cooperation of the attackers resides in two aspects:redundant interception under the threat of the defender and the relative intercept geometry with the target.The miss distances,the relative intercept angle errors and the costs of the agents are combined into a single performance index of the game.Such formulation enables a unitary approach to the design of guidance laws for the agents.To minimize the control efforts and miss distances for the attackers,an optimization method is proposed to find the best anticipated miss distances to the defender under the constraint that the defender is endowed with a capture radius.Numerical simulations with two cases are conducted to illustrate the effectiveness of the proposed cooperative guidance law.
基金co-supported by the National Natural Science Foundation of China (No. 11672093)the Shanghai Aerospace Science and Technology Innovation Foundation (No. SAST2016039)
文摘This paper investigates a cooperative strategy for protecting an aerial target.The problem is solved as a game among four players(a target,two defenders,and a missile).In this scenario,the target launches two defenders(defender-1 and defender-2)simultaneously,to establish a oneway cooperation system(OCS)against an attacking missile.A new optimal evasion strategy for the target is also derived.During the engagement,the target takes into account the reaction of the attacking missile,and guides defender-1 to the interception point by receiving information from defender-1.Depending on the control effort of the target,defender-2 can choose appropriate launch conditions and use very limited maneuvering capability to intercept the missile.For adversaries with first-order dynamics,simulation results show that the OCS allows two defenders to intercept the missile.During the engagement,even if one defender or communication channel is broken,the OCS still allows an interception to be made,thus increasing the target’s survivability.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573374,61503408,61703421,and 61773398)
文摘This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the conventionally used predicted impact point based mid-course guidance and seeker acquisition. Secondly, in order to optimally estimate and predict the target trajectory information, the interacting multiple model(IMM) algorithm is used with the constant velocity(CV) model, the constant acceleration(CA) model and the Singer model serving as the model set. The target states are described with the probability density function(PDF) based on the IMM prediction. Thirdly, the interceptor seeker target acquisition model is established which considers the blur edge region of the field of view. The cooperative target acquisition algorithm is designed by maximizing the interceptor seekers cooperative coverage of the target high probability region(HPR). Finally, digital simulations prove the effectiveness of the proposed method and reveal that the real challenge in the hypersonic target acquisition is the poor trajectory prediction accuracy which may further result to the unsteadiness of the interceptor trajectories.
文摘为了优化单发多收协同雷达(single-transmitter multi-receiver cooperative radar,SMCR)探测系统的低截获概率(low probability of interception,LPI),利用SMCR目标探测的截获因子构造优化目标函数。首先,在二维平面上描述SMCR目标探测场景,分析探测区域内接收机队列的接收增益及其近似估计方法。然后,针对目标位置先验已知情况,建立SMCR系统的接收机队列优化模型,分析模型解集。最后,针对目标搜索区域先验已知情况,从多个维度仿真分析接收机队列的LPI特性。仿真结果表明,针对目标位置或目标搜索区域先验已知的SMCR探测场景,接收机队列的队形设计有利于改善系统的LPI性能。针对目标位置已知的实测数据定性说明了所提方法仿真结果的合理性。