As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and...As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,展开更多
Various control schemes of automobile pollution are comprehensively evaluated by using the weighting and feyzzy methods, from which several feasible schemes are selected, and then mulit-target decision is made by usin...Various control schemes of automobile pollution are comprehensively evaluated by using the weighting and feyzzy methods, from which several feasible schemes are selected, and then mulit-target decision is made by using the minimum distance and hierarcby analysis methods, for determining the optimal control methods of automobile pollution.展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are a...Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructe...Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructed an emotional model that integrated personality and visual perception for pedestrians.The emotional model was then integrated with pedestrian relationship networks to establish a decision-making model that sup-ported pedestrians’altruistic behaviors.A mapping model has been developed to correlate antisocial personality traits with attack strategies employed by terrorists.Experiments demonstrate that the proposed algorithm can generate practical heterogeneous behaviors that align with existing psychological research findings.展开更多
In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social...In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware.Social Engineering(SE)in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic.In this paper,a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory(RNN-LSTM)to identify well-disguised SE threats in social media posts.We use a custom dataset crawled from hundreds of corporate and personal Facebook posts.First,the social engineering attack detection pipeline(SEAD)is designed to filter out social posts with malicious intents using domain heuristics.Next,each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data.Then,we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering.The experimental result showed that the Social Engineering Attack(SEA)model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts.The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA.展开更多
基金College Doctor Foundation (20060699026)Aviation Basic Scientific Foundation (05D53021).
文摘As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,
文摘Various control schemes of automobile pollution are comprehensively evaluated by using the weighting and feyzzy methods, from which several feasible schemes are selected, and then mulit-target decision is made by using the minimum distance and hierarcby analysis methods, for determining the optimal control methods of automobile pollution.
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金Supported by the State Key Laboratory Foundation under Grant No.9140C2304080607the Aviation Science Foundation under Grant No.05F53027
文摘Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金Supported by the Natural Science Foundation of Zhejiang Province(LZ23F020005)Ningbo Science Technology Plan projects(2022Z077 and 2021S091).
文摘Existing simulations of terrorist attacks do not consider individual variations.To overcome this lim-itation,we propose a framework to model heterogeneous behavior of individuals during terrorist attacks.We constructed an emotional model that integrated personality and visual perception for pedestrians.The emotional model was then integrated with pedestrian relationship networks to establish a decision-making model that sup-ported pedestrians’altruistic behaviors.A mapping model has been developed to correlate antisocial personality traits with attack strategies employed by terrorists.Experiments demonstrate that the proposed algorithm can generate practical heterogeneous behaviors that align with existing psychological research findings.
基金The authors acknowledge the funding support ofFRGS/1/2021/ICT07/UTAR/02/3 and IPSR/RMC/UTARRF/2020-C2/G01 for this study.
文摘In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware.Social Engineering(SE)in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic.In this paper,a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory(RNN-LSTM)to identify well-disguised SE threats in social media posts.We use a custom dataset crawled from hundreds of corporate and personal Facebook posts.First,the social engineering attack detection pipeline(SEAD)is designed to filter out social posts with malicious intents using domain heuristics.Next,each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data.Then,we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering.The experimental result showed that the Social Engineering Attack(SEA)model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts.The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA.