期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
DIRECT PERTURBATION METHOD FOR REANALYSIS OF MATRIX SINGULAR VALUE DECOMPOSITION
1
作者 吕振华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第5期471-477,共7页
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb... The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method. 展开更多
关键词 matrix algebra singular value decomposition REANALYSIS perturbation method
在线阅读 下载PDF
PERTURBATION METHOD FOR REANALYSIS OF THE MATRIX SINGULAR VALUE DECOMPOSITION
2
作者 吕振华 冯振东 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第7期705-715,共11页
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr... The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced. 展开更多
关键词 matrix algebra singular value decomposition reanalysis perturbation method
在线阅读 下载PDF
An Approximate Linear Solver in Least Square Support Vector Machine Using Randomized Singular Value Decomposition
3
作者 LIU Bing XIANG Hua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第4期283-290,共8页
In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equ... In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equations should be solved repeatedly for choosing appropriate parameters in LSSVM, so the key for speeding up LSSVM is to improve the method of solving the linear equations. We approximate large-scale kernel matrices and get the approximate solution of linear equations by using randomized singular value decomposition(randomized SVD). Some data sets coming from University of California Irvine machine learning repository are used to perform the experiments. We find LSSVM based on randomized SVD is more accurate and less time-consuming in the case of large number of variables than the method based on Nystrom method or Lanczos process. 展开更多
关键词 least square support vector machine Nystr?m method Lanczos process randomized singular value decomposition
原文传递
Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation 被引量:4
4
作者 Shuiguang TONG Zilong FU +2 位作者 Zheming TONG Junjie LI Feiyun CONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第5期404-418,共15页
Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time va... Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time variability,which brings challenges to fault feature extraction.To address this issue,a new demodulation technique,based on the Fourier decomposition method and resonance demodulation,is proposed to extract fault-related information.First,the Fourier decomposition method decomposes the vibration signal into Fourier intrinsic band functions(FIBFs)adaptively in the frequency domain.Then,the original signal is segmented into short-time vectors to construct double-row matrices and the maximum singular value ratio method is employed to estimate the resonance frequency.Then,the resonance frequency is used as a criterion to guide the selection of the most relevant FIBF for demodulation analysis.Finally,for the optimal FIBF,envelope demodulation is conducted to identify the fault characteristic frequency.The main contributions are that the proposed method describes how to obtain the resonance frequency effectively and how to select the optimal FIBF after decomposition in order to extract the fault characteristic frequency.Both numerical and experimental studies are conducted to investigate the performance of the proposed method.It is demonstrated that the proposed method can effectively demodulate the fault information from the original signal. 展开更多
关键词 Fourier decomposition method singular value ratio Resonance frequency Envelope demodulation Fault diagnosis
原文传递
A TRUST-REGION METHOD FOR SOLVING TRUNCATED COMPLEX SINGULAR VALUE DECOMPOSITION
5
作者 Jiaofen Li Lingchang Kong +2 位作者 Xuefeng Duan Xuelin Zhou Qilun Luo 《Journal of Computational Mathematics》 SCIE CSCD 2024年第4期999-1031,共33页
The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is fo... The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach. 展开更多
关键词 Truncated singular value decomposition Riemannian optimization Trust-region method
原文传递
On the Application of Adomian Decomposition Method to Special Equations in Physical Sciences
6
作者 Aishah Alsulami Mariam Al-Mazmumy +1 位作者 Huda Bakodah Nawal Alzaid 《American Journal of Computational Mathematics》 2023年第3期387-397,共11页
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a... The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations. 展开更多
关键词 Iterative Scheme Adomian decomposition method Initial-value Problems singular Ordinary Differential Equations
在线阅读 下载PDF
Extracting the interference components of normal modes in shallow water waveguide using singular value decomposition method
7
作者 GAO Wei 《Chinese Journal of Acoustics》 CSCD 2016年第2期111-124,共14页
The normal mode interference characteristic in shallow water waveguide is a valu- able topic in the fields of underwater acoustic. A method for extracting the interference components of normal modes from broadband aco... The normal mode interference characteristic in shallow water waveguide is a valu- able topic in the fields of underwater acoustic. A method for extracting the interference components of normal modes from broadband acoustic propagation data recorded by a single hy- drophone without any prior information is present in this paper. First, a Hermitian matrix is formed by the power spectral density. Second, a singular value decomposition (SVD) is performed on the Hermitian matrix to obtain the orthonormal eigenvectors, which are proportional to the interference components of normal modes. The fundamental equations of the new extracting method are derived based on normal mode and waveguide invariant theory. And the validity of the present method is verified by the numerical simulation and experimental results. In addition, the extracted results of normal-mode interference components are intended to be used for passive ranging of broadband sources. 展开更多
关键词 Extracting the interference components of normal modes in shallow water waveguide using singular value decomposition method MODE
原文传递
融合相似度与随机森林的数据挖掘算法改进 被引量:1
8
作者 孙宝刚 何国斌 《计算机仿真》 2025年第1期362-366,共5页
为了避免噪声数据干扰数据挖掘效果,提高数据挖掘的精度和质量,提出融合相似度与随机森林的数据挖掘算法。采用奇异值分解算法分解数据矩阵,获得一系列奇异值,同时引入中位数绝对偏差法在上述奇异值中选取较大的奇异值,利用这些奇异值... 为了避免噪声数据干扰数据挖掘效果,提高数据挖掘的精度和质量,提出融合相似度与随机森林的数据挖掘算法。采用奇异值分解算法分解数据矩阵,获得一系列奇异值,同时引入中位数绝对偏差法在上述奇异值中选取较大的奇异值,利用这些奇异值展开重构,得到去噪后的数据;计算去噪后数据的样本熵,将其作为数据特征,结合P值和特征相似度对数据特征展开筛选,剔除冗余特征,选取最优数据特征;建立极限随机森林,将数据特征输入极限随机森林中,实现数据挖掘。实验结果表明,所提算法在数据挖掘过程中具有较高的查全率、F-measure指标以及AUC值,表明所提算法具有良好的数据挖掘性能。 展开更多
关键词 数据相似度 奇异值分解算法 中位数绝对偏差法 极限随机森林 数据挖掘
在线阅读 下载PDF
一种激光测距的大型构件机器人初始寻位方法
9
作者 李茂勇 黄继强 +1 位作者 薛龙 张建军 《机械设计与制造》 北大核心 2025年第11期109-112,共4页
针对机器人在焊接、打磨前对大型构件寻位困难、低效等问题,提出了一种基于激光测距的大型构件机器人初始寻位的方法。根据构建的大型构件初始寻位测量系统,通过激光测距获得大型构件在加工工位上的特征点数据,利用转换关系将坐标寻位... 针对机器人在焊接、打磨前对大型构件寻位困难、低效等问题,提出了一种基于激光测距的大型构件机器人初始寻位的方法。根据构建的大型构件初始寻位测量系统,通过激光测距获得大型构件在加工工位上的特征点数据,利用转换关系将坐标寻位转换为求解坐标系之间的关系。运用奇异值分解法求解坐标转换矩阵,可以快速得到所需要的机器人参数,在保证大型构件在工位上的精确定位同时,大大减少了机器人寻位的时间。实验结果表明,激光测距方法对港机臂架寻位误差在0.06mm以内,满足大型构件机器人寻位的要求,明显提高了大型工件机器人作业效率。 展开更多
关键词 大型构件 工业机器人 初始寻位 激光测距 奇异值分解法
在线阅读 下载PDF
基于张量核范数与广义全变分正则化的张量补全模型与算法
10
作者 徐智 王川龙 《高校应用数学学报(A辑)》 北大核心 2025年第3期315-326,共12页
为了克服全变分正则(TV)在图像补全过程中出现的“阶梯效应”,该文给出了张量广义全变分(TTGV)的定义,提出一种基于张量核范数(TNN)与TTGV的张量补全模型.使用交替方向乘子法(ADMM)将原问题转化为几个子问题的求解,提出模型的算法框架,... 为了克服全变分正则(TV)在图像补全过程中出现的“阶梯效应”,该文给出了张量广义全变分(TTGV)的定义,提出一种基于张量核范数(TNN)与TTGV的张量补全模型.使用交替方向乘子法(ADMM)将原问题转化为几个子问题的求解,提出模型的算法框架,并给出了算法的收敛性分析.将提出的算法和其他三种不同类型的张量补全方法对不同采样率的彩色图像和灰度视频进行张量补全.数值实验证明,该文提出的算法在图像补全的视觉和质量方面均取得了更好的效果. 展开更多
关键词 张量奇异值分解 张量核范数 张量广义全变分 张量补全 交替方向乘子法
在线阅读 下载PDF
两类El Niño与长江中下游降水年际变化的协同演变
11
作者 徐博阳 张荣华 +1 位作者 吴敏敏 智海 《大气科学》 北大核心 2025年第5期1475-1494,共20页
本文基于多窗谱分析—奇异值分解(MTM-SVD)方法对长江中下游降水和热带太平洋海表面温度(SST)进行不同时间尺度信号的分离和时空重构,研究了年际时间尺度上与厄尔尼诺—南方涛动(ENSO)相关的热带太平洋SST强迫对长江中下游降水的影响及... 本文基于多窗谱分析—奇异值分解(MTM-SVD)方法对长江中下游降水和热带太平洋海表面温度(SST)进行不同时间尺度信号的分离和时空重构,研究了年际时间尺度上与厄尔尼诺—南方涛动(ENSO)相关的热带太平洋SST强迫对长江中下游降水的影响及可能机制。结果表明,长江中下游地区降水和热带太平洋SST存在着准两年(2.4年)和准四年(3.7年)的协同变化周期,且这两个年际主导模态分别与El Niño的中太平洋(CP)型和东太平洋(EP)型有关。与两类El Niño事件相关的SST强迫会引发不同的东亚大气环流异常响应,均有利于长江中下游地区降水偏多。在准两年周期上,CP El Niño成熟期会引发东亚—太平洋型大气遥相关;在准四年周期上,EP El Niño成熟期会产生经向偶极型分布的东亚大气活动中心。此外,两类El Niño事件成熟期均会激发西北太平洋异常反气旋环流。上述大气环流系统变化共同增强了从南海向长江中下游地区的水汽输送,造成该地区在两类El Niño成熟期间降水偏多。对2002年中国降水事件的个例分析表明,准两年和准四年周期变率对同期长江中下游地区降水变化的相对贡献存在差异。准四年周期变率有利于2002年春季长江中下游降水的偏多,而准两年周期变率起到减少的作用;2002年秋季的情况与之相反。本研究结果有助于深化对热带太平洋多时间尺度SST强迫影响长江中下游降水年际变化机制的认识,并提高长江中下游地区降水预测的准确性。 展开更多
关键词 两类厄尔尼诺事件 长江中下游降水 年际变化 多窗谱分析—奇异值分解方法 信号分离和重构
在线阅读 下载PDF
基于奇异值分解的环状张拉整体结构找形方法
12
作者 吕晨浩 肖勇 王立朋 《空间电子技术》 2025年第2期41-47,共7页
环状张拉整体结构在空间领域常用于天线结构,但其找形问题复杂且研究不足。为简化分析过程并增强对不同拓扑结构的适用性,本研究提出了一种新的环状张拉整体结构找形方法。该方法通过将坐标向量和力密度向量拆分为转换矩阵与特征参数相... 环状张拉整体结构在空间领域常用于天线结构,但其找形问题复杂且研究不足。为简化分析过程并增强对不同拓扑结构的适用性,本研究提出了一种新的环状张拉整体结构找形方法。该方法通过将坐标向量和力密度向量拆分为转换矩阵与特征参数相乘,利用奇异值分解获得特征参数,并通过迭代使结构收敛到稳定位置。该方法适用于规则分布的环状结构,依赖其以圆心为对称中心的特性,结构的坐标以及力密度可以被表示为两组特征参数,这极大地简化了问题的求解。通过两类环状张拉整体结构的数值算例验证了方法的可行性和高计算效率,表明其能显著降低规则环状张拉结构的找形难度,并在不同初始条件和模块数量下保持高效。此外,该方法避免了复杂的参数化建模分析,简化了问题的复杂性。未来,该方法有望扩展到其他规则分布的结构找形分析中。 展开更多
关键词 找形方法 张拉整体结构 特征参数 转换矩阵 奇异值分解
在线阅读 下载PDF
SOME PROBLEMS WITH THE METHOD OF FUNDAMENTAL SOLUTION USING RADIAL BASIS FUNCTIONS 被引量:9
13
作者 Wang Hui Qin Qinghua 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期21-29,共9页
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and ... The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference. 展开更多
关键词 meshless method analog equation method method of fundamental solution radial basis function singular value decomposition Helmholtz equation
在线阅读 下载PDF
Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression 被引量:7
14
作者 Jian-yun CHEN Qiang XY +2 位作者 Jing LI Shu-li FAN Qiang xu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第6期432-439,共8页
The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the ... The aim of this study was to design and construct an improved response surface method(RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam.The limitation and lacuna of the traditional RSM were briefly analyzed.Firstly,based on small experimental points,research was devoted to an improved RSM with singular value decomposition techniques.Then,the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point.Finally,a test example was given to verify this method.Compared with other conventional algorithms,this method has some strong advantages:this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency. 展开更多
关键词 Response surface method(RSM) RELIABILITY Gravity dam singular value decomposition Weighted regression Deviation coefficient
原文传递
THE MESHLESS VIRTUAL BOUNDARY METHOD AND ITS APPLICATIONS TO 2D ELASTICITY PROBLEMS 被引量:3
15
作者 Sun Haitao Wang Yuanhan 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期30-40,共11页
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to... A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods. 展开更多
关键词 numerical method singular integral boundary effect radial basis function networks integral equation virtual boundary source function singular value decomposition
在线阅读 下载PDF
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 被引量:2
16
作者 Xiaowei Feng Xiangyu Kong Hongguang Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期149-156,共8页
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a nov... This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. © 2014 Chinese Association of Automation. 展开更多
关键词 Clustering algorithms Covariance matrix Data mining Differential equations EXTRACTION Learning algorithms Negative impedance converters Newton Raphson method Ordinary differential equations singular value decomposition
在线阅读 下载PDF
SVD-MPE: An SVD-Based Vector Extrapolation Method of Polynomial Type 被引量:1
17
作者 Avram Sidi 《Applied Mathematics》 2016年第11期1260-1278,共20页
An important problem that arises in different areas of science and engineering is that of computing the limits of sequences of vectors , where , N being very large. Such sequences arise, for example, in the solution o... An important problem that arises in different areas of science and engineering is that of computing the limits of sequences of vectors , where , N being very large. Such sequences arise, for example, in the solution of systems of linear or nonlinear equations by fixed-point iterative methods, and are simply the required solutions. In most cases of interest, however, these sequences converge to their limits extremely slowly. One practical way to make the sequences converge more quickly is to apply to them vector extrapolation methods. Two types of methods exist in the literature: polynomial type methods and epsilon algorithms. In most applications, the polynomial type methods have proved to be superior convergence accelerators. Three polynomial type methods are known, and these are the minimal polynomial extrapolation (MPE), the reduced rank extrapolation (RRE), and the modified minimal polynomial extrapolation (MMPE). In this work, we develop yet another polynomial type method, which is based on the singular value decomposition, as well as the ideas that lead to MPE. We denote this new method by SVD-MPE. We also design a numerically stable algorithm for its implementation, whose computational cost and storage requirements are minimal. Finally, we illustrate the use of SVD-MPE with numerical examples. 展开更多
关键词 Vector Extrapolation Minimal Polynomial Extrapolation singular value decomposition Krylov Subspace methods
在线阅读 下载PDF
基于压缩感知的缺失机械振动信号重构新方法 被引量:3
18
作者 郭俊锋 胡婧怡 王智明 《振动与冲击》 EI CSCD 北大核心 2024年第10期197-204,共8页
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法... 针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。 展开更多
关键词 压缩感知 缺失信号 自适应二次临近项交替方向乘子算法(AQ-ADMM) K-奇异值分解(K-SVD) 正交匹配追踪
在线阅读 下载PDF
Methods in Model Order Reduction(MOR) field
19
作者 刘志超 《无线互联科技》 2014年第10期126-127,254,共3页
Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industr... Nowadays,the modeling of systems may be quite large,even up to tens of thousands orders.In spite of the increasing computational powers,direct simulation of these large-scale systems may be impractical.Thus,to industry requirements,analytically tractable and computationally cheap models must be designed.This is the essence task of Model Order Reduction(MOR).This article describes the basics of MOR optimization,various way of designing MOR,and gives the conclusion about existing methods.In addition,it proposed some heuristic footpath. 展开更多
关键词 无线互联网 MOR 手机 移动通信
在线阅读 下载PDF
基于同态加密的隐私保护主成分分析方法 被引量:1
20
作者 张金斗 陈经纬 +1 位作者 吴文渊 冯勇 《计算机科学》 CSCD 北大核心 2024年第8期387-395,共9页
在现实生活中,不同的行业之间,甚至同行业不同部门之间的数据并不互通,随着计算机算力的提升,制约模型训练效果的不是算力而是数据量。因此,想要得到更好的算法模型,仅靠某一方的数据是不够的,需要两方或者多方的参与,这就要求对各方的... 在现实生活中,不同的行业之间,甚至同行业不同部门之间的数据并不互通,随着计算机算力的提升,制约模型训练效果的不是算力而是数据量。因此,想要得到更好的算法模型,仅靠某一方的数据是不够的,需要两方或者多方的参与,这就要求对各方的数据进行隐私保护。除此之外,随着收集的数据越来越详细,数据的维数也越来越大。面对高维的数据,数据降维是不可缺少的环节,而在数据降维方面,主成分分析(Principal Component Analysis,PCA)是常用的手段。当拥有数据的两方想要合作进行隐私保护的数据降维时,同态加密技术是一种解决办法。同态加密技术可以在保护数据隐私的前提下对加密数据进行计算,可以用在加密数据的PCA上。针对上述应用场景,利用CKKS同态加密方案,通过幂法迭代的SVD技术设计了一种两方加密数据进行PCA的方案,在保护两方数据隐私的前提下实现数据降维的目的;通过改进传统幂法迭代步骤,避免了代价高昂的同态密文除法运算,使得在选取较小的加密参数时,也能支持更多的幂法迭代次数,从而在缩短同态计算时间的同时提高计算精度。在公共数据集上进行测试,并与现有方案进行对比,该方案在计算耗时上缩短了约80%,与明文计算结果的均方误差缩减到1%以内。 展开更多
关键词 同态加密 隐私保护 主成分分析 奇异值分解 幂法
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部