期刊文献+
共找到781,061篇文章
< 1 2 250 >
每页显示 20 50 100
Explicit multi-symplectic method for the Zakharov-Kuznetsov equation 被引量:3
1
作者 钱旭 宋松和 +1 位作者 高二 李伟斌 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期43-48,共6页
We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler ... We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation. 展开更多
关键词 multi-symplectic method Fourier pseudospectral method Euler method Zakharov-Kuznetsov equation
原文传递
Multi-symplectic method for generalized Boussinesq equation
2
作者 胡伟鹏 邓子辰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第7期927-932,共6页
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton ... The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations. 展开更多
关键词 generalized Boussinesq equation multi-symplectic method soliton solution conservation law
在线阅读 下载PDF
Multi-symplectic methods for membrane free vibration equation 被引量:3
3
作者 胡伟鹏 邓子辰 李文成 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第9期1181-1189,共9页
In this paper, the multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space are considered. The complex method is introduced and a semi-implicit twenty-... In this paper, the multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space are considered. The complex method is introduced and a semi-implicit twenty-seven-points scheme with certain discrete conservation laws-a multi-symplectic conservation law (CLS), a local energy conservation law (ECL) as well as a local momentum conservation law (MCL) --is constructed to discrete the PDEs that are derived from the membrane free vibration equation. The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior, 展开更多
关键词 multi-symplectic complex discretization Runge-Kutta methods
在线阅读 下载PDF
Multi-symplectic method for generalized fifth-order KdV equation 被引量:6
4
作者 胡伟鹏 邓子辰 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期3923-3929,共7页
This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu... This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect. 展开更多
关键词 generalized fifth-order KdV equation multi-symplectic travelling wave solution conservation law
原文传递
Second order conformal multi-symplectic method for the damped Korteweg–de Vries equation
5
作者 Feng Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期20-26,共7页
A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissma... A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissmann box scheme,we obtain a conformal multi-symplectic scheme for multi-symplectic partial differential equations(PDEs) with added dissipation. Applying it to the DKdV equation, we construct a conformal multi-symplectic algorithm for it, which is of second order accuracy in time. Numerical experiments demonstrate that the proposed method not only preserves the dissipation rate of mass exactly with periodic boundary conditions, but also has excellent long-time numerical behavior. 展开更多
关键词 CONFORMAL multi-symplectic method DAMPED Korteweg–de Vries (KdV) equation DISSIPATION preservation
原文传递
Multi-symplectic method for the coupled Schrdinger–KdV equations
6
作者 张弘 宋松和 +1 位作者 周炜恩 陈绪栋 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期226-232,共7页
In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospect... In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method. 展开更多
关键词 coupled Schr/Sdinger-KdV equations multi-symplectic Fourier pseudospectral method
原文传递
A Review on Stochastic Multi-symplectic Methods for Stochastic Maxwell Equations
7
作者 Liying Zhang Chuchu Chen +1 位作者 Jialin Hong Lihai Ji 《Communications on Applied Mathematics and Computation》 2019年第3期467-501,共35页
Stochastic multi-symplectic methods are a class of numerical methods preserving the discrete stochastic multi-symplectic conservation law. These methods have the remarkable superiority to conventional numerical method... Stochastic multi-symplectic methods are a class of numerical methods preserving the discrete stochastic multi-symplectic conservation law. These methods have the remarkable superiority to conventional numerical methods when applied to stochastic Hamiltonian partial differential equations (PDEs), such as long-time behavior, geometric structure preserving, and physical properties preserving. Stochastic Maxwell equations driven by either additive noise or multiplicative noise are a system of stochastic Hamiltonian PDEs intrinsically, which play an important role in fields such as stochastic electromagnetism and statistical radiophysics. Thereby, the construction and the analysis of various numerical methods for stochastic Maxwell equations which inherit the stochastic multi-symplecticity, the evolution laws of energy and divergence of the original system are an important and promising subject. The first stochastic multi-symplectic method is designed and analyzed to stochastic Maxwell equations by Hong et al.(A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys. 268:255-268, 2014). Subsequently, there have been developed various stochastic multi-symplectic methods to solve stochastic Maxwell equations. In this paper, we make a review on these stochastic multi-symplectic methods for solving stochastic Maxwell equations driven by a stochastic process. Meanwhile, the theoretical results of well-posedness and conservation laws of the stochastic Maxwell equations are included. 展开更多
关键词 STOCHASTIC multi-symplectic methodS STOCHASTIC HAMILTONIAN partial differential EQUATIONS STOCHASTIC Maxwell EQUATIONS Structure-preserving methodS
在线阅读 下载PDF
Explicit Multi-symplectic Method for a High Order Wave Equation of KdV Type
8
作者 WANG JUN-JIE WANG XIU-YING 《Communications in Mathematical Research》 CSCD 2018年第3期193-204,共12页
In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constru... In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constructed for the equation, and the conservation laws of the continuous equation are presented. The multisymplectic discretization of each formulation is exemplified by the multi-symplectic Fourier pseudospectral scheme. The numerical experiments are given, and the results verify the efficiency of the Fourier pseudospectral method. 展开更多
关键词 the high order wave equation of KdV type multi-symplectic theory Hamilton space Fourier pseudospectral method local conservation law
在线阅读 下载PDF
Multi-symplectic method for the generalized(2+1)-dimensionalKdV-mKdV equation
9
作者 Wei-Peng Hu Zi-Chen Deng +1 位作者 Yu-Yue Qin Wen-Rong Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期793-800,共8页
In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tio... In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws. 展开更多
关键词 Generalized (2+ 1)-dimensional KdV-mKdVequation multi-symplectic Periodic wave solution Con-servation law ~ Jacobi elliptic function
在线阅读 下载PDF
Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation 被引量:2
10
作者 胡伟鹏 邓子辰 +1 位作者 韩松梅 范玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第8期1027-1034,共8页
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ... Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors. 展开更多
关键词 multi-symplectic Landau-Ginzburg-Higgs equation Runge-Kutta method conservation law soliton solution
在线阅读 下载PDF
Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation 被引量:2
11
作者 陈亚铭 朱华君 宋松和 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第10期617-622,共6页
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap... Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method. 展开更多
关键词 splitting method multi-symplectic scheme two-dimensional nonlinear SchrSdinger equation
在线阅读 下载PDF
Multi-symplectic method to analyze the mixed state of Ⅱ-superconductors 被引量:4
12
作者 HU WeiPeng1↑ & DENG ZiChen1,2 1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China 2 State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116023, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2008年第12期1835-1844,共10页
The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-sy... The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-symplectic formulations with several conservation laws: a multi-symplectic conservation law, an energy con- servation law, as well as a momentum conservation law, are presented firstly; then an eighteen points scheme is constructed to simulate the multi-symplectic partial differential equations (PDEs) that are derived from the Ginzburg-Landau equation; finally, based on the simulation results, the volt-ampere characteristic curves are obtained, as well as the relationships between the temperature and resistivity of a suppositional two-band II-superconductor model under different magnetic intensi- ties. From the results of the numerical experiments, it is concluded that the notable property of the mixed state of the two-band II-superconductor is that: The trans- formation temperature decreases and the resistivity ρ increases rapidly with the increase of the magnetic intensity B. In addition, the simulation results show that the multi-symplectic method has two remarkable advantages: high accuracy and excellent long-time numerical behavior. 展开更多
关键词 two-band GINZBURG-LANDAU equation mixed state multi-symplectic CONSERVATION LAW
原文传递
Multi-symplectic wavelet splitting method for the strongly coupled Schrodinger system
13
作者 钱旭 陈亚铭 +1 位作者 高二 宋松和 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期16-22,共7页
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can... We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation. 展开更多
关键词 multi-symplectic wavelet splitting method symplectic Euler method strongly couplednonlinear SchrSdinger equations
原文传递
A Multi-Symplectic Compact Method for the Two-Component Camassa-Holm Equation with Singular Solutions
14
作者 Xiang Li Xu Qian +1 位作者 Bo-Ya Zhang Song-He Song 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期8-12,共5页
The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, t... The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, the proposed method is derived by the sixth-order compact finite difference method in spatial discretization and the symplectic implicit midpoint scheme in temporal discretization. Numerical experiments finely describe the velocity and density variables in the two-component integrable system and distinctly display the evolvement of the singular solutions. Moreover, the proposed method shows good conservative properties during long-time numerical simulation. 展开更多
关键词 A multi-symplectic Compact method for the Two-Component Camassa-Holm Equation with Singular Solutions
原文传递
Explicit Multi-Symplectic Methods for Hamiltonian Wave Equations
15
作者 Jialin Hong Shanshan Jiang +1 位作者 Chun Li Hongyu Liu 《Communications in Computational Physics》 SCIE 2007年第4期662-683,共22页
In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic sc... In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic schemes are constructed and investigated,where the nonlinear wave equation is taken as a model problem.Numerical comparisons are made to illustrate the effectiveness of our newly derived explicit multi-symplectic integrators. 展开更多
关键词 Hamiltonian wave equations multi-symplectic integration symplectic Runge-Kutta methods symplectic Runge-Kutta-Nystrom methods.
原文传递
Numerical Dispersion Relation of Multi-symplectic Runge-Kutta Methods for Hamiltonian PDEs
16
作者 张然 刘宏宇 张凯 《Northeastern Mathematical Journal》 CSCD 2006年第3期349-356,共8页
Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the diffe... Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the differential equation. This provides further understanding of MSRK methods. However, much still remains to be investigated further. 展开更多
关键词 multi-symplectic KdV equation partitioned Runge-Kutta method
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
17
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Centralized Circumcentered-Reection Method for Solving the Convex Feasibility Problem in Sparse Signal Recovery
18
作者 Chunmei LI Bangjun CHEN Xuefeng DUAN 《Journal of Mathematical Research with Applications》 2026年第1期119-133,共15页
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery... Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods. 展开更多
关键词 convex feasibility problem centralized circumcentered-re ection method sparse signal recovery compressed sensing
原文传递
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
19
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
New explicit multi-symplectic scheme for nonlinear wave equation 被引量:4
20
作者 李昊辰 孙建强 秦孟兆 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第3期369-380,共12页
Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and ... Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward error analysis shows that the explicit multi-symplectic scheme has good accuracy. The sine-Gordon equation and the Klein-Gordon equation are simulated by an explicit multi-symplectic scheme. The numerical results show that the new explicit multi-symplectic scheme can well simulate the solitary wave behaviors of the nonlinear wave equation and approximately preserve the relative energy error of the equation. 展开更多
关键词 nonlinear wave equation multi-symplectic method backward error analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部