We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler ...We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.展开更多
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton ...The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.展开更多
In this paper, the multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space are considered. The complex method is introduced and a semi-implicit twenty-...In this paper, the multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space are considered. The complex method is introduced and a semi-implicit twenty-seven-points scheme with certain discrete conservation laws-a multi-symplectic conservation law (CLS), a local energy conservation law (ECL) as well as a local momentum conservation law (MCL) --is constructed to discrete the PDEs that are derived from the membrane free vibration equation. The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior,展开更多
This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu...This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.展开更多
A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissma...A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissmann box scheme,we obtain a conformal multi-symplectic scheme for multi-symplectic partial differential equations(PDEs) with added dissipation. Applying it to the DKdV equation, we construct a conformal multi-symplectic algorithm for it, which is of second order accuracy in time. Numerical experiments demonstrate that the proposed method not only preserves the dissipation rate of mass exactly with periodic boundary conditions, but also has excellent long-time numerical behavior.展开更多
In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospect...In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.展开更多
Stochastic multi-symplectic methods are a class of numerical methods preserving the discrete stochastic multi-symplectic conservation law. These methods have the remarkable superiority to conventional numerical method...Stochastic multi-symplectic methods are a class of numerical methods preserving the discrete stochastic multi-symplectic conservation law. These methods have the remarkable superiority to conventional numerical methods when applied to stochastic Hamiltonian partial differential equations (PDEs), such as long-time behavior, geometric structure preserving, and physical properties preserving. Stochastic Maxwell equations driven by either additive noise or multiplicative noise are a system of stochastic Hamiltonian PDEs intrinsically, which play an important role in fields such as stochastic electromagnetism and statistical radiophysics. Thereby, the construction and the analysis of various numerical methods for stochastic Maxwell equations which inherit the stochastic multi-symplecticity, the evolution laws of energy and divergence of the original system are an important and promising subject. The first stochastic multi-symplectic method is designed and analyzed to stochastic Maxwell equations by Hong et al.(A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys. 268:255-268, 2014). Subsequently, there have been developed various stochastic multi-symplectic methods to solve stochastic Maxwell equations. In this paper, we make a review on these stochastic multi-symplectic methods for solving stochastic Maxwell equations driven by a stochastic process. Meanwhile, the theoretical results of well-posedness and conservation laws of the stochastic Maxwell equations are included.展开更多
In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constru...In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constructed for the equation, and the conservation laws of the continuous equation are presented. The multisymplectic discretization of each formulation is exemplified by the multi-symplectic Fourier pseudospectral scheme. The numerical experiments are given, and the results verify the efficiency of the Fourier pseudospectral method.展开更多
In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tio...In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws.展开更多
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ...Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.展开更多
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap...Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.展开更多
The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-sy...The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-symplectic formulations with several conservation laws: a multi-symplectic conservation law, an energy con- servation law, as well as a momentum conservation law, are presented firstly; then an eighteen points scheme is constructed to simulate the multi-symplectic partial differential equations (PDEs) that are derived from the Ginzburg-Landau equation; finally, based on the simulation results, the volt-ampere characteristic curves are obtained, as well as the relationships between the temperature and resistivity of a suppositional two-band II-superconductor model under different magnetic intensi- ties. From the results of the numerical experiments, it is concluded that the notable property of the mixed state of the two-band II-superconductor is that: The trans- formation temperature decreases and the resistivity ρ increases rapidly with the increase of the magnetic intensity B. In addition, the simulation results show that the multi-symplectic method has two remarkable advantages: high accuracy and excellent long-time numerical behavior.展开更多
We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can...We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.展开更多
The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, t...The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, the proposed method is derived by the sixth-order compact finite difference method in spatial discretization and the symplectic implicit midpoint scheme in temporal discretization. Numerical experiments finely describe the velocity and density variables in the two-component integrable system and distinctly display the evolvement of the singular solutions. Moreover, the proposed method shows good conservative properties during long-time numerical simulation.展开更多
In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic sc...In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic schemes are constructed and investigated,where the nonlinear wave equation is taken as a model problem.Numerical comparisons are made to illustrate the effectiveness of our newly derived explicit multi-symplectic integrators.展开更多
Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the diffe...Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the differential equation. This provides further understanding of MSRK methods. However, much still remains to be investigated further.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and ...Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward error analysis shows that the explicit multi-symplectic scheme has good accuracy. The sine-Gordon equation and the Klein-Gordon equation are simulated by an explicit multi-symplectic scheme. The numerical results show that the new explicit multi-symplectic scheme can well simulate the solitary wave behaviors of the nonlinear wave equation and approximately preserve the relative energy error of the equation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270)the National Basic Research Program of China (Grant No. 2009CB723802)
文摘We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.
基金Project supported by the National Natural Science Foundation of China (Nos.10572119,10772147,10632030)the Doctoral Program Foundation of Education Ministry of China (No.20070699028)+1 种基金the Natural Science Foundation of Shaanxi Province of China (No.2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.
基金the National Natural Science Foundation of China(Nos.10632030 and 10572119)Program for New Century Excellent Talents of Ministry of Education of China(No.NCET-04-0958)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘In this paper, the multi-symplectic formulations of the membrane free vibration equation with periodic boundary conditions in Hamilton space are considered. The complex method is introduced and a semi-implicit twenty-seven-points scheme with certain discrete conservation laws-a multi-symplectic conservation law (CLS), a local energy conservation law (ECL) as well as a local momentum conservation law (MCL) --is constructed to discrete the PDEs that are derived from the membrane free vibration equation. The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior,
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572119, 10772147 and 10632030)the Doctoral Program Foundation of Education Ministry of China (Grant No 20070699028)+1 种基金the National Natural Science Foundation of Shaanxi Province of China (Grant No 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
基金Project supported by the Program for Innovative Research Team in Science and Technology in Fujian Province University,China,the Quanzhou High Level Talents Support Plan,China(Grant No.2017ZT012)the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University,China(Grant No.ZQN-YX502)
文摘A conformal multi-symplectic method has been proposed for the damped Korteweg–de Vries(DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissmann box scheme,we obtain a conformal multi-symplectic scheme for multi-symplectic partial differential equations(PDEs) with added dissipation. Applying it to the DKdV equation, we construct a conformal multi-symplectic algorithm for it, which is of second order accuracy in time. Numerical experiments demonstrate that the proposed method not only preserves the dissipation rate of mass exactly with periodic boundary conditions, but also has excellent long-time numerical behavior.
基金Project supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of High Performance Computing
文摘In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrtidinger-KdV equations (CS'KE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.
文摘Stochastic multi-symplectic methods are a class of numerical methods preserving the discrete stochastic multi-symplectic conservation law. These methods have the remarkable superiority to conventional numerical methods when applied to stochastic Hamiltonian partial differential equations (PDEs), such as long-time behavior, geometric structure preserving, and physical properties preserving. Stochastic Maxwell equations driven by either additive noise or multiplicative noise are a system of stochastic Hamiltonian PDEs intrinsically, which play an important role in fields such as stochastic electromagnetism and statistical radiophysics. Thereby, the construction and the analysis of various numerical methods for stochastic Maxwell equations which inherit the stochastic multi-symplecticity, the evolution laws of energy and divergence of the original system are an important and promising subject. The first stochastic multi-symplectic method is designed and analyzed to stochastic Maxwell equations by Hong et al.(A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys. 268:255-268, 2014). Subsequently, there have been developed various stochastic multi-symplectic methods to solve stochastic Maxwell equations. In this paper, we make a review on these stochastic multi-symplectic methods for solving stochastic Maxwell equations driven by a stochastic process. Meanwhile, the theoretical results of well-posedness and conservation laws of the stochastic Maxwell equations are included.
文摘In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constructed for the equation, and the conservation laws of the continuous equation are presented. The multisymplectic discretization of each formulation is exemplified by the multi-symplectic Fourier pseudospectral scheme. The numerical experiments are given, and the results verify the efficiency of the Fourier pseudospectral method.
基金supported by the National Natural Science Foundation of China (11002115,10972182,11172239)the Science Foundation of Aviation of China (2010ZB53021)+5 种基金the China Postdoctoral Science Special Foundation (201003682)111 project(B07050) to the Northwestern Polytechnical Universitythe NPU Foundation for Fundamental Research (JC200938,JC20110259)the Doctoral Program Foundation of Education Ministry of China(20106102110019)the Open Foundation of State Key Laboratory of Mechanical System & Vibration (MSV-2011-21)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (GZ0802)
文摘In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws.
基金supported by the National Natural Science Foundation of China (Nos. 10772147 and10632030)the Ph. D. Program Foundation of Ministry of Education of China (No. 20070699028)+2 种基金the Natural Science Foundation of Shaanxi Province of China (No. 2006A07)the Open Foundationof State Key Laboratory of Structural Analysis of Industrial Equipment (No. GZ0802)the Foundation for Fundamental Research of Northwestern Polytechnical University
文摘Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.
基金Supported by the Natural Science Foundation of China under Grant No.0971226the 973 Project of China under Grant No.2009CB723802+1 种基金the Research Innovation Fund of Hunan Province under Grant No.CX2011B011the Innovation Fund of NUDT under Grant No.B110205
文摘Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (Grant Nos. 10572119, 10772147 and 10632030)the Doctoral Program Founda-tion of Education Ministry of China (Grant No. 20070699028)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-symplectic formulations with several conservation laws: a multi-symplectic conservation law, an energy con- servation law, as well as a momentum conservation law, are presented firstly; then an eighteen points scheme is constructed to simulate the multi-symplectic partial differential equations (PDEs) that are derived from the Ginzburg-Landau equation; finally, based on the simulation results, the volt-ampere characteristic curves are obtained, as well as the relationships between the temperature and resistivity of a suppositional two-band II-superconductor model under different magnetic intensi- ties. From the results of the numerical experiments, it is concluded that the notable property of the mixed state of the two-band II-superconductor is that: The trans- formation temperature decreases and the resistivity ρ increases rapidly with the increase of the magnetic intensity B. In addition, the simulation results show that the multi-symplectic method has two remarkable advantages: high accuracy and excellent long-time numerical behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10971226,91130013,and 11001270)the National Basic Research Program of China(Grant No.2009CB723802)+1 种基金the Research Innovation Fund of Hunan Province,China (Grant No.CX2011B011)the Innovation Fund of National University of Defense Technology,China(Grant No.B120205)
文摘We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11571366 and 11501570the Open Foundation of State Key Laboratory of High Performance Computing of China+1 种基金the Research Fund of the National University of Defense Technology under Grant No JC15-02-02the Fund from HPCL
文摘The two-component Camassa–Holm equation includes many intriguing phenomena. We propose a multi-symplectic compact method to solve the two-component Camassa–Holm equation. Based on its multi-symplectic formulation, the proposed method is derived by the sixth-order compact finite difference method in spatial discretization and the symplectic implicit midpoint scheme in temporal discretization. Numerical experiments finely describe the velocity and density variables in the two-component integrable system and distinctly display the evolvement of the singular solutions. Moreover, the proposed method shows good conservative properties during long-time numerical simulation.
基金supported by the Director Innovation Foundation of ICMSEC and AMSS,the Foundation of CAS,the NNSFC(No.19971089 and No.10371128)the National Basic Research Program of China under the Grant 2005CB321701.
文摘In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic schemes are constructed and investigated,where the nonlinear wave equation is taken as a model problem.Numerical comparisons are made to illustrate the effectiveness of our newly derived explicit multi-symplectic integrators.
基金The NNSF (10471054) of Chinathe China Postdoctoral Science Foundationthe Youth Foundation of Institute of Mathematics, Jilin University
文摘Numerical dispersion relation of the multi-symplectic Runge-Kutta (MSRK) method for linear Hamiltonian PDEs is derived in the present paper, which is shown to be a discrete counterpart to that possessed by the differential equation. This provides further understanding of MSRK methods. However, much still remains to be investigated further.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Project supported by the National Natural Science Foundation of China(Nos.11161017,11071251,and 10871099)the National Basic Research Program of China(973 Program)(No.2007CB209603)+1 种基金the Natural Science Foundation of Hainan Province(No.110002)the Scientific Research Foun-dation of Hainan University(No.kyqd1053)
文摘Based on splitting multi-symplectic structures, a new multi-symplectic scheme is proposed and applied to a nonlinear wave equation. The explicit multi-symplectic scheme of the nonlinear wave equation is obtained, and the corresponding multi-symplectic conservation property is proved. The backward error analysis shows that the explicit multi-symplectic scheme has good accuracy. The sine-Gordon equation and the Klein-Gordon equation are simulated by an explicit multi-symplectic scheme. The numerical results show that the new explicit multi-symplectic scheme can well simulate the solitary wave behaviors of the nonlinear wave equation and approximately preserve the relative energy error of the equation.