期刊文献+
共找到2,319篇文章
< 1 2 116 >
每页显示 20 50 100
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements 被引量:3
1
作者 Guo Zongming Zhang Yaoting +1 位作者 Lu Jiezhi Fan Jian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期697-714,共18页
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce... To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading. 展开更多
关键词 fiber beam-column element stiffness degradation damage index reinforced concrete column reinforced concrete frame
在线阅读 下载PDF
Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel
2
作者 Qingdong ZENG Fan DENG +7 位作者 Zhiheng ZHU Yun TANG Boyun WANG Yongjun XIAO Liangbin XIONG Huaqing YU Lianbo GUO Xiangyou LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期46-51,共6页
In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibra... In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application. 展开更多
关键词 LASER-INDUCED BREAKDOWN spectroscopy optical fiber QUANTITATIVE ANALYSES MINOR element
在线阅读 下载PDF
Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
3
作者 Qi-Wei Wang Shi Qiu +9 位作者 Jin-Hui Yuan Gui-Yao Zhou Chang-Ming Xia Yu-Wei Qu Xian Zhou Bin-Bin Yan Qiang Wu Kui-Ru Wang Xin-Zhu Sang Chong-Xiu Yu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期422-428,共7页
Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind... Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed.To achieve the single-polarization single-mode transmission,we use two different silica tubes in thickness,which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes,respectively.Besides,the elliptical elements are introduced to achieve good single-mode performance.By studying the influences of the structure parameters on the propagation characteristics,the optimized structure parameters are obtained.The simulation results show that when the wavelength is fixed at 1550 nm,the single-polarization single-mode transmission is achieved,with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174.Furthermore,the confinement loss is only 0.0015 dB/m. 展开更多
关键词 hollow-core negative curvature fiber single-polarization SINGLE-MODE finite element method
原文传递
Optimized fiber allocation for enhanced impact resistance in composites through damage mode suppression
4
作者 Noha M.Hassan Zied Bahroun +2 位作者 Mahmoud I.Awad Rami As'ad El-Cheikh Amer Kaiss 《Defence Technology(防务技术)》 2026年第1期316-329,共14页
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may... Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart. 展开更多
关键词 Sandwich panel fiber reinforced plastic composites Finite element analysis Variable stiffness Impact resistance Regression analysis Process optimization
在线阅读 下载PDF
Finite element modeling of consolidation process of Si C fiber-reinforced titanium matrix composites via matrix-coated fiber method 被引量:2
5
作者 Xiang-Hong Xu Yan-Qing Yang +3 位作者 Xian Luo Lin Qin Ju-Hong Lou Qing Sun 《Rare Metals》 SCIE EI CAS CSCD 2015年第12期844-850,共7页
The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plasti... The consolidation process of SiC<sub>f</sub>/Ti-6Al-4V composites by matrix-coated fiber (MCF) method via hot pressing was investigated using finite element modeling (FEM). By analyzing the elastic–plastic contact deformation of the representative aligned coated fibers, the consolidation maps delineating the time–temperature–pressure relationship for full densification were constructed. Both the flow coefficient and the contact area coefficient used to describe the contact deformation were calculated according to the model. In addition, the effect of fiber content on matrix stress distribution was analyzed. The results show that fiber content is a significant factor that influences the densification process. Higher fiber content will lower the consolidation rate. 展开更多
关键词 Titanium matrix composites CONSOLIDATION Finite element modeling Matrix-coated fiber
原文传递
Modeling of interphases in multiple heterogeneities reinforced composites using Voronoi cell finite elements 被引量:5
6
作者 Rui Zhang Ting Wang Ran Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第4期887-901,共15页
In this paper,a Voronoi cell finite element model is developed to study the microscopic and macroscopic mechanical behaviors of heterogenous materials,including arbitrary distributed heterogeneity(inclusions or fibers... In this paper,a Voronoi cell finite element model is developed to study the microscopic and macroscopic mechanical behaviors of heterogenous materials,including arbitrary distributed heterogeneity(inclusions or fibers)coated with interphase layers,based on linear elasticity theory.The interphase between heterogeneity and a matrix are regarded as in the third phase(elastic layers),in contrast to the perfect interface of the spring-like Voronoi cell finite element model(VCFEM)in the literature.In this model,both stress and the displacement field are assumed to be independent in an element.Formulations of stress are derived for each of the three phases in an element,as is the type of functional.Numerical examples were used to study the microscopic and macroscopic properties,such as the effective modulus,of the composites.The results of the proposed VCFEM were compared with analytical solution and numerical results obtained from a standard finite element analysis to confirm its effectiveness. 展开更多
关键词 Voronoi cell finite element method INTERPHASE Multiple fiber composites Effective elastic property
原文传递
Evaluation of stiffness in a cellulose fiber reinforced epoxy laminates for structural applications:Experimental and finite element analysis 被引量:1
7
作者 Furkan Ahmad Pramendra Kumar Bajpai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期278-286,共9页
Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doo... Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied. 展开更多
关键词 Finite element ANALYSIS JUTE fiber Polymer composite Ply-stacking WEFT fiber angle LAMINATES ANALYSIS
在线阅读 下载PDF
Application of the Finite Element Method in the Glass Fiber Bushing Research 被引量:1
8
作者 CHEN Song LU Jiansheng +4 位作者 GUAN Weiming ZHANG Kunhua PAN Yong TAN Zhilong XIA Lu 《贵金属》 CAS CSCD 北大核心 2012年第A01期59-65,共7页
Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent... Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing. 展开更多
关键词 BUSHING the finite element glass fiber SIMULATION DESIGN optimize CREEP
在线阅读 下载PDF
Calculation of the Coupling Coefficient of Twin-Core Fiber Based on the Supermode Theory with Finite Element Method 被引量:1
9
作者 Tianhao Zhao Wenhua Ren +1 位作者 Tingya Yin Fan Wang 《Optics and Photonics Journal》 2021年第8期402-411,共10页
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app... <div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div> 展开更多
关键词 Coupling Coefficient Twin-Core fiber Supermode Theory Finite element Method Coupled Mode Theory
在线阅读 下载PDF
Multiple-cell elements and regular multifractals
10
作者 殷雅俊 李颖 +1 位作者 杨帆 范钦珊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第1期55-65,共11页
Based on fractal super fibers and binary fractal fibers, the following objectives are approached in this paper: First, the concept of multiple-cell elements is induced and abstracted. Second, through multiple-cell el... Based on fractal super fibers and binary fractal fibers, the following objectives are approached in this paper: First, the concept of multiple-cell elements is induced and abstracted. Second, through multiple-cell elements, the constructability of regular multifractals with strict self-similarities is confirmed, and the universality of the con- struction mode for regular multifractals is proved. Third, through the construction mode and multiple-cell elements, regular multifractals are demonstrated to be equivalent to generalized regular single fractals with multilayer fine structures. On the basis of such equivalence, the dimension formula of the regular single fractal is extended to that of the regular multifractal, and the geometry of regular single fractals is extended to that of regular multifractals. Fourth, through regular multifractals, a few golden fractals are constructed. 展开更多
关键词 binary fractal fibers binary cell elements regular binary fractals multiplecell elements regular multifractals
在线阅读 下载PDF
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams
11
作者 XU Lihua CHI Yin +1 位作者 SU Jie XIA Dongtao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期201-206,共6页
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In... By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably. 展开更多
关键词 steel fiber reinforced concrete deep beam nonlinear finite element bond stress-slip relationship
在线阅读 下载PDF
Finite Element Modeling of Stamp Forming Process on Fiber Metal Laminates
12
作者 Xiaocen Dou Sivakumar Dhar Malingam +1 位作者 Jae Nam Shankar Kalyanasundaram 《World Journal of Engineering and Technology》 2015年第3期247-252,共6页
Fiber-metal laminates (FMLs) possess huge potential in mass-reduction strategy of automotive industry. In order to understand behavior of FMLs as they undergo stamp forming processes, finite element analyses of surfac... Fiber-metal laminates (FMLs) possess huge potential in mass-reduction strategy of automotive industry. In order to understand behavior of FMLs as they undergo stamp forming processes, finite element analyses of surface strain evolutions have been carried out. The simulations provide strains at locations within the layers of an FML, allowing better understanding of forming behavior of the composite layer and its influence on the metal layers. Finite element analyses were conducted on two aluminum-based FMLs with different fiber-reinforced composites and benchmarked against monolithic aluminum alloy. The simulation results indicated that high stiffness of the reinforcement constrains flow of the matrix in the composite layer, which can be attributed to the distinguishing behavior of the FMLs compared to the monolithic aluminum alloy. 展开更多
关键词 fiber Metal LAMINATES STAMP FORMING FINITE element Modeling
暂未订购
Finite Element Modeling of Stamp Forming Process on Thermoplastic-Based Fiber Metal Laminates at Elevated Temperatures
13
作者 Xiaocen Dou Sivakumar Dhar Malingam +1 位作者 Jae Nam Shankar Kalyanasundaram 《World Journal of Engineering and Technology》 2015年第3期253-258,共6页
This paper investigated stamp forming performance of two aluminum-based Fiber-metal laminates (FMLs) with different fiber-reinforced composites using finite element analysis. Given the inherent thermal-dependent prope... This paper investigated stamp forming performance of two aluminum-based Fiber-metal laminates (FMLs) with different fiber-reinforced composites using finite element analysis. Given the inherent thermal-dependent properties of fiber-reinforced polypropylene, the effect of elevated temperature on its forming behavior is worthy of concern. Furthermore, the elevation in temperature also influences the bonding within the constituent lamina. Both factors were integrated in the modelling. By investigating the through-thickness strain evolution throughout the stamping process, the forming mode of each layer, as well as their interactions, were better understood. Results suggested that the flow of matrix and the rotation at the intersections of fiber strands can be promoted at elevated temperature, which transforms the forming performance of FMLs close to that of monolithic aluminum. These results propose means to improve the forming performance of FMLs. 展开更多
关键词 fiber Metal LAMINATES STAMP FORMING FINITE element Modeling
暂未订购
Measurement of Rotatory Optics Element in Tensor Dielectric Matrix for Rotatory Optical Fiber
14
作者 刘敬浩 张晓帆 +1 位作者 李华舟 鲍振武 《Transactions of Tianjin University》 EI CAS 2005年第2期115-118,共4页
The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory... The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply. 展开更多
关键词 rotatory optics element tensor dielectric coefficient rotatory optic fiber polarized light
在线阅读 下载PDF
Comparison and Finite Element Analysis of Steel or Synthetic Fiber Reinforced Precast, Prestressed Beams
15
作者 Gábor Kovács Károly Páter Juhász Botond Madaras 《Journal of Civil Engineering and Architecture》 2015年第9期1054-1059,共6页
Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence... Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence, synthetic material could be a suitable alternative material solution. Thus, it would appear logical to undertake a comparison of these fibers' load bearing capacity to determine suitability in each case. In this paper, the bending and the shear tests of four large-scale and prestressed beams made of steel or synthetic fiber reinforced concrete without stirrups are presented. The post-cracking residual tensile strength diagram of the fibers, according to RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) TC162, is given and the experimental behavior of the fiber solutions is compared. The modified fracture energy method is used to define an advanced material model for the fiber reinforced concrete in the finite element analysis. The numerical calculations and the test results are compared in terms of crack propagation and the loading-deflect'ion process. As a consequence, both steel and synthetic fibers seem to be good alternatives to replace the stirrups. However, the behavior of each fiber is not the same. The numerical calculation provided a good approximation for the real scale tests. 展开更多
关键词 Synthetic fiber steel fiber PRESTRESS PRECAST finite element analysis.
在线阅读 下载PDF
NUMERICAL SIMULATION OF 2D FIBER-REINFORCED COMPOSITES USING BOUNDARY ELEMENT METHOD
16
作者 孔凡忠 郑小平 +1 位作者 姚振汉 HUANG Dun 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1515-1522,共8页
The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considerin... The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites. 展开更多
关键词 INCLUSION boundary element method 2D elasticity fiber-reinforced composite
在线阅读 下载PDF
Study on the influence of fiber orientation on the stress state in the cfrp cutting process
17
作者 WANG Yiqi LI Xiang +3 位作者 SANG Yunfei YU Jiadi CHEN Liangzi TANG Shanshan 《纤维复合材料》 2025年第3期8-11,26,共5页
Carbon fiber reinforced polymer(CFRP)composites,as a typical difficult-to-machine material,exhibit high cutting forces and temperatures during actual machining,leading to more severe tool wear compared to traditional ... Carbon fiber reinforced polymer(CFRP)composites,as a typical difficult-to-machine material,exhibit high cutting forces and temperatures during actual machining,leading to more severe tool wear compared to traditional metal ma-terials.The shear fracture during fiber cutting is incomplete,resulting in surface defects such as unclosed fibers and burrs.To analyze the cutting forces and tool wear areas when cutting CFRP with different fiber angles,a three-dimensional or-thogonal cutting model of CFRP was established using finite element software and the VUMAT subroutine,based on the three-dimensional Hashin criterion.Simulation results show that during the cutting process of CFRP,high-stress areas appear in the region where the cutting edge contacts the workpiece for each fiber orientation,primarily concentrated in the first deformation zone in contact with the cutting edge.The Mises stress is highest when cutting the 90°fibers and lowest when cutting the 0°fibers.When cutting the 0°and 135°fibers,the tool is prone to wear on both the rake and flank faces,while when cutting the 45°and 90°fibers,the tool's rake face is more likely to experience wear. 展开更多
关键词 CFRP three-dimensional hashin criterion fiber orientation finite element
在线阅读 下载PDF
Deformation monitoring at shield tunnel joints:Laboratory test and discrete element simulation
18
作者 Maoyi Mao Xiaowei Yang +2 位作者 Chun Liu Tao Zhao Hui Liu 《Deep Underground Science and Engineering》 2025年第1期149-157,共9页
Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sen... Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sensing technology was used to perform strain monitoring,but there is an urgent need to determine how to transform strain into displacement.In this study,optical frequency domain reflectometry was applied in laboratory tests.Aiming at the shear process and center settlement process of shield tunnel segments,two kinds of quantitative calculation methods were put forward to carry out a quantitative analysis.Meanwhile,the laboratory test process was simulated numerically utilizing the discrete element numerical analysis method.Optical fiber,an atypical geotechnical material,was innovatively applied for discrete element modeling and numerical simulation.The results show that the measured displacement of the dial gauge,the calculated results of the numerical model,and the displacement quantitatively calculated from the optical fiber data agree with each other in general.The latter two methods can potentially be utilized in engineering application of deformation monitoring at shield tunnel joints,but need to be further calibrated and adjusted in detail. 展开更多
关键词 discrete element method distributed optical fiber MatDEM OFDR shield tunnel
原文传递
A clip-on composite sensor based packaging design method for fiber Bragg grating axle counter
19
作者 Mengyao Zhao Xueyun Cao +2 位作者 Longsheng Wang Yang Peng Tao Wang 《Railway Sciences》 2025年第5期647-665,共19页
Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term ... Purpose–To address the encapsulation challenge of fiber Bragg grating(FBG)sensors in complex railway environments,this paper designs a clip-on composite sensor enabling installation-friendly deployment and long-term axle counting system monitoring.Design/methodology/approach–Wheel–rail mechanical behavior was simulated via finite element analysis(FEA)to determine optimal sensor placement.A clip-on composite sensor was subsequently engineered.Stress transduction efficacy was validated through FEA quantification of stress responses at the axle counter location.Findings–The proposed FBG axle counter integrates temperature compensation and anti-detachment monitoring as well as advantages such as simplified installation with minimal maintenance and sustained operational reliability.It effectively transmits stress,yielding a measured strain of 39μe under static loading conditions without sensitivity-enhancing elements.Originality/value–This study performs FEA of wheel-rail stress distribution and engineers the dual-slot composite sensor,FEAwas conducted to quantify the stress magnitude at the axle sensor position of the dual-slot composite sensor.Additionally,FEA was performed on sensors with different structural configurations,including adjustments to the axle sensor position,number of slots and axle position.The results confirmed that the designed composite sensor exhibits superior stress transfer characteristics. 展开更多
关键词 fiber Bragg grating Axle counting Finite element Sensor Wheel-rail forces
在线阅读 下载PDF
Investigating the Influence of Printing Parameters on the Helical Deformation of 4D-printed Liquid Crystal Elastomer Fiber-actuators
20
作者 Chun Zhang Reyihanguli Muhetaer +10 位作者 Tong-Zhi Zang Shuang Fu Jun-Peng Cheng Li Yang Jian Wang Kun Yang Guo-Xia Fei Qing-Yuan Wang Xi-Li Lu He-Sheng Xia Yue Zhao 《Chinese Journal of Polymer Science》 2025年第4期605-615,共11页
Liquid crystal elastomers(LCEs)exhibit exceptional reversible deformation and unique physical properties owing to their order-disorder phase transition under external stimuli.Among these deformations,helical structure... Liquid crystal elastomers(LCEs)exhibit exceptional reversible deformation and unique physical properties owing to their order-disorder phase transition under external stimuli.Among these deformations,helical structures have attracted attention owing to their distinctive configurations and promising applications in biomimetics and microelectronics.However,the helical deformation behavior of fiber actuators is critically influenced by their morphologies and alignments;yet,the underlying mechanisms are not fully understood.Through a two-step azaMichael addition reaction and direct ink writing(DIW)4D printing technology,fiber-based LCE actuators with a core-sheath alignment structure were fabricated and exhibited reversible helical deformation upon heating.By adjusting the printing parameters,the filament number,width,thickness,and core-sheath structure of the fiber actuators can be precisely controlled,resulting in deformation behaviors,such as contraction,bending,and helical twisting.Finite element simulations were performed to investigate the deformation behaviors of the fiber actuators,providing insights into the variations in stress and strain during the shape-changing process,which can be used to explain the shape-morphing mechanism.These findings demonstrate that the precise tuning of printing parameters enables the controllable construction of LCE actuator morphology and customization of their functional properties,paving the way for advanced applications in smart fabrics,biomedical engineering,and flexible electronics. 展开更多
关键词 Liquid crystal elastomer 4D printing Helical deformation Finite element simulation fiber actuators
原文传递
上一页 1 2 116 下一页 到第
使用帮助 返回顶部