The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often...The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often used.The OLA neglects the multiple scattering of the constituent nucleons in the projectile and target nuclei.However,the nucleon-target version of the Glauber model(the NTG model)proposed by Abu-Ibrahim and Suzuki includes multiple scattering effects between the projectile nucleons and target nuclei.The NTG model was found to improve the description of the elastic scattering angular distributions and total reaction cross sections of some light heavy-ion systems with respect to the OLA.In this work,we study the single-nucleon removal reactions(SNRRs)induced by carbon isotopes on ^(12)C and ^(9)Be targets using both the NTG model and the OLA.Reduction factors(RFs)of the single-nucleon spectroscopic factors were obtained by comparing the experimental and theoretical SNRR cross sections.On average,the RFs obtained with the NTG model were smaller than those obtained using the OLA by 7.8%,in which the average difference in one-neutron removal was 10.6% and that in one-proton removal was 4.2%.However,the RFs were still strongly dependent on the neutron-proton asymmetryΔS of the projectile nuclei,even when the NTG model was used.展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit mode...Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.展开更多
Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorde...Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.展开更多
A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the ca...A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the carbonyl group through a hydrogen bonding network generated by the catalyst.This activation method allows the reactions to be performed with very low catalyst loading,as low as 0.5 mol%.The scope of substrates is broad and a wide variety of functional groups are well tolerated.Diverse aliphatic aldehydes,aromatic aldehydes,unsaturated aldehydes and aromatic ketones coupled with silyl enol ethers/silyl ketone acetals to generate their correspondingβ-hydroxy carbonyl compounds in moderate to good yields.This discovery represents a significant advancement in the field of organic synthesis,as it provides a new,practical and sustainable solution for carbon-carbon bond formation in water.展开更多
An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.Thi...An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.展开更多
The development of environmentally friendly catalysts has become a top priority for acetylene hydrochlorination.However,difficulties remain in systematic studies on the applicability of kinetic models for the industri...The development of environmentally friendly catalysts has become a top priority for acetylene hydrochlorination.However,difficulties remain in systematic studies on the applicability of kinetic models for the industrialization of Cu-based catalysts.Therefore,a strategy involving reactor modeling,parameter estimation,and model testing is developed to evaluate the predictive ability of kinetic models.In order to search for reliable and widely applicable reaction kinetic models for Cu-based catalysts,a case study is conducted.Multiple possible kinetic models derived from the power law,adsorption mechanism,and reaction path are sifted through collecting and testing activity data from tens of Cu-based catalysts.Different optimum applicable ranges of these kinetic models are presented.According to the comparative analysis on their applications in various industrial scenarios,this research suggests that kinetic models derived from reaction path exhibits the best extrapolation ability and has the greatest potential for application in the scale-up design of reactors.展开更多
The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant ...The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant deviations from reality.To address this issue,this study proposes a novel multi-order dynamic model for acid-rock reaction by combining rotating disk experimental data with theoretical derivation.Through numerical simulations,this model allows for the investigation of the impact of acidification conditions on different orders of reaction,thereby providing valuable insights for on-site construction.The analysis reveals that higher response orders require higher optimal acid liquid flow rates,and lower optimal H+diffusion coefficients,and demonstrate no significant correlation with acid concentration.Consequently,it is recommended to increase the displacement and use high-viscosity acid for reservoirs with high calcite content,while reducing the displacement and using low-viscosity acid for reservoirs with high dolomite content.展开更多
The properties of nonadiabatic trapping models of the reaction NH+H -N+H, are investigated in a collinear model as \veil as a non-collinear thermal reaction on the basis of theintrinsic reaction coordinate (IRC) intbr...The properties of nonadiabatic trapping models of the reaction NH+H -N+H, are investigated in a collinear model as \veil as a non-collinear thermal reaction on the basis of theintrinsic reaction coordinate (IRC) intbrmation obtained by ah initio calculations at QCISD/631 IG** ie\el. Using the unitied statistical theory fornonadiabatic trapping models. the thermal rateconstants over the temperature range of 2000-3000K are computed which are in excellent agreementwith the experiment results.展开更多
To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers re...To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.展开更多
A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory....A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.展开更多
Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reac...Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reaction cross-section of long-lived fission products based on a tensor model.This tensor model is an extension of the collaborative filtering algorithm used for nuclear data.It is based on tensor decomposition and completion to predict(n,2n)reaction cross-sections;the corresponding EXFOR data are applied as training data.The reliability of the proposed tensor model was validated by comparing the calculations with data from EXFOR and different databases.Predictions were made for long-lived fission products such as^(60)Co,^(79)Se,^(93)Zr,^(107)P,^(126)Sn,and^(137)Cs,which provide a predicted energy range to effectively transmute long-lived fission products into shorter-lived or less radioactive isotopes.This method could be a powerful tool for completing(n,2n)reaction cross-sectional data and shows the possibility of selective transmutation of nuclear waste.展开更多
The theoretical cross section calculations for the astrophysical p process are needed because most of the related reactions are technically very difficult to be measured in the laboratory. Even if the reaction was mea...The theoretical cross section calculations for the astrophysical p process are needed because most of the related reactions are technically very difficult to be measured in the laboratory. Even if the reaction was measured,most of the measured reactions have been carried out at the higher energy range from the astrophysical energies.Therefore, almost all cross sections needed for p process simulation have to be theoretically calculated or extrapolated to the astrophysical energies.^(112)Sn(α,γ)^(116)Te is an important reaction for the p process nucleosynthesis. The theoretical cross section of ^(112)Sn(α,γ)^(116)Te reaction was investigated for different global optical model potentials,level density, and strength function models at the astrophysically interested energies. Astrophysical S factors were calculated and compared with experimental data available in the EXFOR database. The calculation with the optical model potential of the dispersive model by Demetriou et al., and the back-shifted Fermi gas level density model and Brink-Axel Lorentzian strength function model best served to reproduce experimental results at an astrophysically relevant energy region. The reaction rates were calculated with these model parameters at the p process temperature and compared with the current version of the reaction rate library Reaclib and Starlib.展开更多
DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive...DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive exists in a molten liquid state, where high-temperature gases expand and react in the form of bubble clouds within the liquid explosive;this process is distinctly different from the dynamic crack propagation process observed in the case of solid explosives. In this study, a control model for the reaction evolution of burning-bubble clouds was established to describe the reaction process and quantify the reaction violence of DNAN-based melt-cast explosives, considering the size distribution and activation mechanism of the burning-bubble clouds. The feasibility of the model was verified through experimental results. The results revealed that under geometrically similar conditions, with identical confinement strength and aspect ratio, larger charge structures led to extended initial gas flow and surface burning processes, resulting in greater reaction equivalence and violence at the casing fracture.Under constant charge volume and size, a stronger casing confinement accelerated self-enhanced burning, increasing the internal pressure, reaction degree, and reaction violence. Under a constant casing thickness and radius, higher aspect ratios led to a greater reaction violence at the casing fracture.Moreover, under a constant charge volume and casing thickness, higher aspect ratios resulted in a higher internal pressure, increased reaction degree, and greater reaction violence at the casing fracture. Further,larger ullage volumes extended the reaction evolution time and increased the reaction violence under constant casing dimensions. Through a matching design of the opening threshold of the pressure relief holes and the relief structure area, a stable burning reaction could be maintained until completion,thereby achieving a control of the reaction violence. The proposed model could effectively reflect the effects of the intrinsic burning rate, casing confinement strength, charge size, ullage volume, and pressure relief structure on the reaction evolution process and reaction violence, providing a theoretical method for the thermal safety design and reaction violence evaluation of melt-cast explosives.展开更多
Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increase...Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.展开更多
Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir propertie...Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir properties.To deepen the understanding of these mechanisms,this review investigates the interactions among injected CO_(2),formation fluids,and rock minerals and evaluates their implications for CCUS-EOR performance.The main results are summarized as follows.First,temperature,pressure,pH,and fluid composition are identified as key factors influencing mineral dissolution and precipitation,which in turn affect porosity,permeability,and CO_(2) storage.Second,carbonate minerals,such as calcite and dolomite,show high reactivity under lower temperature conditions,enhancing dissolution and permeability,while silicate minerals,including illite,kaolinite,quartz,and K-feldspar,are comparatively inert.Third,the formation of carbonic acid during CO_(2) injection promotes dissolution,whereas secondary precipitation,especially of clay minerals,can reduce pore connectivity and limit flow paths.Fourth,mineral transformation and salt precipitation can further modify reservoir characteristics,influencing both oil recovery and long-term CO_(2) trapping.Fifth,advanced experimental tools,such as Computed Tomography(CT)and Nuclear Magnetic Resonance(NMR)imaging,combined with geochemical modeling and reservoir simulation,are essential to predict petrophysical changes across scales.This review provides a theoretical foundation for integrating geochemical processes into CCUS-EOR design,offering technical support for field application and guiding sustainable CO_(2) management in oil reservoirs.展开更多
The shortage of CO_(2) source and the challenges associated with the separation of pure CO_(2) have led to a growing interest in the potential utilization of CO_(2)-contained IWG.Therefore,this study has established a...The shortage of CO_(2) source and the challenges associated with the separation of pure CO_(2) have led to a growing interest in the potential utilization of CO_(2)-contained IWG.Therefore,this study has established an acid-rock interaction kinetic model to characterize the long-term interactions between CO_(2)-contained IWG and shale.The findings delineate the reaction process into three phases:during the initial 10 years,solubility trapping predominates,with minimal mineral dissolution.This increases shale porosity,promoting the diffusion and storage range of CO_(2)-contained IWG.Between 10 and 300 years,mineral dissolution/precipitation assumes primacy,with mineral trapping gradually supplanting dissolution.Notably,shale porosity diminishes by a minimum of approximately 40%,effectively inhibiting gas leakage.After 300 years,equilibrium is reached,with rock porosity consistently lower than the initial porosity.Throughout the entire reaction process,as the initial CO_(2) concentration decreases,the initial pH drops from 4.42 to 3.61,resulting in a roughly 20%increase in porosity.Additionally,it is necessary to regulate its concentration to avoid H_(2)S leakage during CO_(2)-contained IWG geological sequestration.And particular attention should be directed towards the risk of gas leakage when the IWG exhibit high levels of SO_(2) or NO_(2).展开更多
Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to pre...Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to predict the biochemical reactions and hydraulic characteristics of MICP and EICP reactions was proposed and verified by physical experiments.Results showed that:This model could describe the variations of bacteria,calcium,calcite,permeability over time reasonably.It is necessary to consider the influence of the calculation domain scale when simulating the convection-diffusionreaction in the multi-process of MICP and EICP reactions.The numerical and experimental values of calcite content are 0.841 g/cm^(3) and 0.861 g/cm^(3) for MICP-reinforced sand,0.263 g/cm^(3) and 0.227 g/cm^(3) for EICP-reinforced sand after 192 h of reaction.The reaction rate k_(rea) is an important parameter to control the calcite content.Accordingly,the permeability coefficient of MICP and EICP reinforced calcareous sand decreases by 32%and 18%.Due to the influence of substance transportation and calcite precipitation,the calcite shows a trend of decreasing firstly and then increasing with the enhancing of the initial permeability coefficient in biochemical reactions.The optimal injecting ratio q11:q12 in this study is 100:300 mL/min.The process for the application of MICP and EICP coupled numerical model is also recommended,which provides reference for engineering projects in ground improvement.展开更多
Possibilities of synchronized oscillations in glycolysis mediated by various extracellular metabolites are investigated theoretically using two-dimensional reaction-diffusion systems, which originate from the existing...Possibilities of synchronized oscillations in glycolysis mediated by various extracellular metabolites are investigated theoretically using two-dimensional reaction-diffusion systems, which originate from the existing seven-variable model. Our simulation results indicate the existence of alternative mediators such as ATP and 1,3-bisphosphoglycerate, in addition to already known acetaldehyde or pyruvate. Further, it is also suggested that the alternative intercellular communicator plays a more important role in the respect that these can synchronize oscillations instantaneously not only with difference phases but also with different periods. Relations between intercellular coupling and synchronization mechanisms are also analyzed and discussed by changing the values of parameters such as the diffusion coefficient and the cell density that can reflect in tercellular coupling strength.展开更多
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for...This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.展开更多
Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mecha...Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.展开更多
基金financially supported by the National Key R&D Program of China(No.2023YFA1606702)the National Natural Science Foundation of China(Nos.U2067205 and 12205098).
文摘The Glauber/eikonal model is a widely used tool for studying intermediate-and high-energy nuclear reactions.When calculating the Glauber/eikonal model phase shift functions,the optical limit approximation(OLA)is often used.The OLA neglects the multiple scattering of the constituent nucleons in the projectile and target nuclei.However,the nucleon-target version of the Glauber model(the NTG model)proposed by Abu-Ibrahim and Suzuki includes multiple scattering effects between the projectile nucleons and target nuclei.The NTG model was found to improve the description of the elastic scattering angular distributions and total reaction cross sections of some light heavy-ion systems with respect to the OLA.In this work,we study the single-nucleon removal reactions(SNRRs)induced by carbon isotopes on ^(12)C and ^(9)Be targets using both the NTG model and the OLA.Reduction factors(RFs)of the single-nucleon spectroscopic factors were obtained by comparing the experimental and theoretical SNRR cross sections.On average,the RFs obtained with the NTG model were smaller than those obtained using the OLA by 7.8%,in which the average difference in one-neutron removal was 10.6% and that in one-proton removal was 4.2%.However,the RFs were still strongly dependent on the neutron-proton asymmetryΔS of the projectile nuclei,even when the NTG model was used.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101005,12475202,12347131,and 12405289).
文摘Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.
基金supported by the National Key Research and Development program(2022YFA1504000)the National Natural Science Foundation of China(22302101)+4 种基金the Fundamental Research Funds for the Central Universities(63185015)Shenzhen Science and Technology Program(JCYJ20210324121002007,JCYJ20230807151503007)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(202402AO370001)China Postdoctoral Science Foundation(2022M721699)Guangdong Basic and Applied Basic Research Foundation(2024A1515010347).
文摘Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.
基金financial support from the Start-up Grant of Nanjing Tech University(Nos.38274017103,38037037)financial support from Distinguished University Professor grant(Nanyang Technological University)+1 种基金the Agency for Science,Technology and Research(A∗STAR)under its MTC Individual Research Grants(No.M21K2c0114)RIE2025 MTC Programmatic Fund(No.M22K9b0049).
文摘A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the carbonyl group through a hydrogen bonding network generated by the catalyst.This activation method allows the reactions to be performed with very low catalyst loading,as low as 0.5 mol%.The scope of substrates is broad and a wide variety of functional groups are well tolerated.Diverse aliphatic aldehydes,aromatic aldehydes,unsaturated aldehydes and aromatic ketones coupled with silyl enol ethers/silyl ketone acetals to generate their correspondingβ-hydroxy carbonyl compounds in moderate to good yields.This discovery represents a significant advancement in the field of organic synthesis,as it provides a new,practical and sustainable solution for carbon-carbon bond formation in water.
文摘An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.
基金supported by the National Key Research and Development Program of China(2021YFA1501803)。
文摘The development of environmentally friendly catalysts has become a top priority for acetylene hydrochlorination.However,difficulties remain in systematic studies on the applicability of kinetic models for the industrialization of Cu-based catalysts.Therefore,a strategy involving reactor modeling,parameter estimation,and model testing is developed to evaluate the predictive ability of kinetic models.In order to search for reliable and widely applicable reaction kinetic models for Cu-based catalysts,a case study is conducted.Multiple possible kinetic models derived from the power law,adsorption mechanism,and reaction path are sifted through collecting and testing activity data from tens of Cu-based catalysts.Different optimum applicable ranges of these kinetic models are presented.According to the comparative analysis on their applications in various industrial scenarios,this research suggests that kinetic models derived from reaction path exhibits the best extrapolation ability and has the greatest potential for application in the scale-up design of reactors.
基金financially supported by the National Natural Science Foundation of China(Project No.51874336)the National Key Technologies Research and Development Program of China during the 13th Five-Year Plan Period(Project No.2017ZX005030005)。
文摘The reaction order plays a crucial role in evaluating the response rate of acid-rock.However,the conventional two-scale model typically assumes that the reaction order is constant as one,which can lead to significant deviations from reality.To address this issue,this study proposes a novel multi-order dynamic model for acid-rock reaction by combining rotating disk experimental data with theoretical derivation.Through numerical simulations,this model allows for the investigation of the impact of acidification conditions on different orders of reaction,thereby providing valuable insights for on-site construction.The analysis reveals that higher response orders require higher optimal acid liquid flow rates,and lower optimal H+diffusion coefficients,and demonstrate no significant correlation with acid concentration.Consequently,it is recommended to increase the displacement and use high-viscosity acid for reservoirs with high calcite content,while reducing the displacement and using low-viscosity acid for reservoirs with high dolomite content.
文摘The properties of nonadiabatic trapping models of the reaction NH+H -N+H, are investigated in a collinear model as \veil as a non-collinear thermal reaction on the basis of theintrinsic reaction coordinate (IRC) intbrmation obtained by ah initio calculations at QCISD/631 IG** ie\el. Using the unitied statistical theory fornonadiabatic trapping models. the thermal rateconstants over the temperature range of 2000-3000K are computed which are in excellent agreementwith the experiment results.
基金financially supported by the National Natural Science Foundation of China (No.22263002)the “Overseas 100 Talents Program” of Guangxi Higher Education。
文摘To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.
基金This work was financially supported by Key R&D Plan of Shandong Province in 2021(Grant No.2021CXGC010209).
文摘A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.
基金supported by the Key Laboratory of Nuclear Data foundation(No.JCKY2022201C157)。
文摘Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reaction cross-section of long-lived fission products based on a tensor model.This tensor model is an extension of the collaborative filtering algorithm used for nuclear data.It is based on tensor decomposition and completion to predict(n,2n)reaction cross-sections;the corresponding EXFOR data are applied as training data.The reliability of the proposed tensor model was validated by comparing the calculations with data from EXFOR and different databases.Predictions were made for long-lived fission products such as^(60)Co,^(79)Se,^(93)Zr,^(107)P,^(126)Sn,and^(137)Cs,which provide a predicted energy range to effectively transmute long-lived fission products into shorter-lived or less radioactive isotopes.This method could be a powerful tool for completing(n,2n)reaction cross-sectional data and shows the possibility of selective transmutation of nuclear waste.
文摘The theoretical cross section calculations for the astrophysical p process are needed because most of the related reactions are technically very difficult to be measured in the laboratory. Even if the reaction was measured,most of the measured reactions have been carried out at the higher energy range from the astrophysical energies.Therefore, almost all cross sections needed for p process simulation have to be theoretically calculated or extrapolated to the astrophysical energies.^(112)Sn(α,γ)^(116)Te is an important reaction for the p process nucleosynthesis. The theoretical cross section of ^(112)Sn(α,γ)^(116)Te reaction was investigated for different global optical model potentials,level density, and strength function models at the astrophysically interested energies. Astrophysical S factors were calculated and compared with experimental data available in the EXFOR database. The calculation with the optical model potential of the dispersive model by Demetriou et al., and the back-shifted Fermi gas level density model and Brink-Axel Lorentzian strength function model best served to reproduce experimental results at an astrophysically relevant energy region. The reaction rates were calculated with these model parameters at the p process temperature and compared with the current version of the reaction rate library Reaclib and Starlib.
基金supported by the National Natural Science Foundation of China (Grant No. 12002044)。
文摘DNAN-based insensitive melt-cast explosives have been widely utilized in insensitive munition in recent years. When constrained DNAN-based melt-cast explosives are ignited under thermal stimulation, the base explosive exists in a molten liquid state, where high-temperature gases expand and react in the form of bubble clouds within the liquid explosive;this process is distinctly different from the dynamic crack propagation process observed in the case of solid explosives. In this study, a control model for the reaction evolution of burning-bubble clouds was established to describe the reaction process and quantify the reaction violence of DNAN-based melt-cast explosives, considering the size distribution and activation mechanism of the burning-bubble clouds. The feasibility of the model was verified through experimental results. The results revealed that under geometrically similar conditions, with identical confinement strength and aspect ratio, larger charge structures led to extended initial gas flow and surface burning processes, resulting in greater reaction equivalence and violence at the casing fracture.Under constant charge volume and size, a stronger casing confinement accelerated self-enhanced burning, increasing the internal pressure, reaction degree, and reaction violence. Under a constant casing thickness and radius, higher aspect ratios led to a greater reaction violence at the casing fracture.Moreover, under a constant charge volume and casing thickness, higher aspect ratios resulted in a higher internal pressure, increased reaction degree, and greater reaction violence at the casing fracture. Further,larger ullage volumes extended the reaction evolution time and increased the reaction violence under constant casing dimensions. Through a matching design of the opening threshold of the pressure relief holes and the relief structure area, a stable burning reaction could be maintained until completion,thereby achieving a control of the reaction violence. The proposed model could effectively reflect the effects of the intrinsic burning rate, casing confinement strength, charge size, ullage volume, and pressure relief structure on the reaction evolution process and reaction violence, providing a theoretical method for the thermal safety design and reaction violence evaluation of melt-cast explosives.
基金support from the National Key R&D Program of China(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171).
文摘Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.
基金support from the National Natural Science Foundation of China(No.52304048)supported by the Sichuan Science and Technology Program(No.2025ZNSFSC1355)the Open Fund(No.PLN202428)of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at Southwest Petroleum University.
文摘Geochemical reactions play a vital role in determining the efficiency of carbon capture,utilization,and storage combined with enhanced oil recovery(CCUS-EOR),particularly through their influence on reservoir properties.To deepen the understanding of these mechanisms,this review investigates the interactions among injected CO_(2),formation fluids,and rock minerals and evaluates their implications for CCUS-EOR performance.The main results are summarized as follows.First,temperature,pressure,pH,and fluid composition are identified as key factors influencing mineral dissolution and precipitation,which in turn affect porosity,permeability,and CO_(2) storage.Second,carbonate minerals,such as calcite and dolomite,show high reactivity under lower temperature conditions,enhancing dissolution and permeability,while silicate minerals,including illite,kaolinite,quartz,and K-feldspar,are comparatively inert.Third,the formation of carbonic acid during CO_(2) injection promotes dissolution,whereas secondary precipitation,especially of clay minerals,can reduce pore connectivity and limit flow paths.Fourth,mineral transformation and salt precipitation can further modify reservoir characteristics,influencing both oil recovery and long-term CO_(2) trapping.Fifth,advanced experimental tools,such as Computed Tomography(CT)and Nuclear Magnetic Resonance(NMR)imaging,combined with geochemical modeling and reservoir simulation,are essential to predict petrophysical changes across scales.This review provides a theoretical foundation for integrating geochemical processes into CCUS-EOR design,offering technical support for field application and guiding sustainable CO_(2) management in oil reservoirs.
基金supported by the National Natural ScienceFoundation of China(No.52074316)PetroChina CompanyLimited(grant number 2019E-2608)。
文摘The shortage of CO_(2) source and the challenges associated with the separation of pure CO_(2) have led to a growing interest in the potential utilization of CO_(2)-contained IWG.Therefore,this study has established an acid-rock interaction kinetic model to characterize the long-term interactions between CO_(2)-contained IWG and shale.The findings delineate the reaction process into three phases:during the initial 10 years,solubility trapping predominates,with minimal mineral dissolution.This increases shale porosity,promoting the diffusion and storage range of CO_(2)-contained IWG.Between 10 and 300 years,mineral dissolution/precipitation assumes primacy,with mineral trapping gradually supplanting dissolution.Notably,shale porosity diminishes by a minimum of approximately 40%,effectively inhibiting gas leakage.After 300 years,equilibrium is reached,with rock porosity consistently lower than the initial porosity.Throughout the entire reaction process,as the initial CO_(2) concentration decreases,the initial pH drops from 4.42 to 3.61,resulting in a roughly 20%increase in porosity.Additionally,it is necessary to regulate its concentration to avoid H_(2)S leakage during CO_(2)-contained IWG geological sequestration.And particular attention should be directed towards the risk of gas leakage when the IWG exhibit high levels of SO_(2) or NO_(2).
基金supports from the National Key R&D Program of China(Grant No.2023YFB4203301)National Natural Science Foundation of China(Grant No.52238008)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20241516).
文摘Microbially induced calcite precipitation(MICP)and Enzyme induced calcite precipitation(EICP)techniques were implemented to reinforce the large-scale calcareous sand in this study.Then a coupled numerical model to predict the biochemical reactions and hydraulic characteristics of MICP and EICP reactions was proposed and verified by physical experiments.Results showed that:This model could describe the variations of bacteria,calcium,calcite,permeability over time reasonably.It is necessary to consider the influence of the calculation domain scale when simulating the convection-diffusionreaction in the multi-process of MICP and EICP reactions.The numerical and experimental values of calcite content are 0.841 g/cm^(3) and 0.861 g/cm^(3) for MICP-reinforced sand,0.263 g/cm^(3) and 0.227 g/cm^(3) for EICP-reinforced sand after 192 h of reaction.The reaction rate k_(rea) is an important parameter to control the calcite content.Accordingly,the permeability coefficient of MICP and EICP reinforced calcareous sand decreases by 32%and 18%.Due to the influence of substance transportation and calcite precipitation,the calcite shows a trend of decreasing firstly and then increasing with the enhancing of the initial permeability coefficient in biochemical reactions.The optimal injecting ratio q11:q12 in this study is 100:300 mL/min.The process for the application of MICP and EICP coupled numerical model is also recommended,which provides reference for engineering projects in ground improvement.
文摘Possibilities of synchronized oscillations in glycolysis mediated by various extracellular metabolites are investigated theoretically using two-dimensional reaction-diffusion systems, which originate from the existing seven-variable model. Our simulation results indicate the existence of alternative mediators such as ATP and 1,3-bisphosphoglycerate, in addition to already known acetaldehyde or pyruvate. Further, it is also suggested that the alternative intercellular communicator plays a more important role in the respect that these can synchronize oscillations instantaneously not only with difference phases but also with different periods. Relations between intercellular coupling and synchronization mechanisms are also analyzed and discussed by changing the values of parameters such as the diffusion coefficient and the cell density that can reflect in tercellular coupling strength.
文摘This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.
基金supported by the National Natural Science Foundation of China (No. 20504012)the New Century Excellent Talents in University of China (No. NCET-07-0421)
文摘Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.