期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
An Optimized Cross Correlation Power Attack of Message Blinding Exponentiation Algorithms 被引量:1
1
作者 WAN Wunan YANG Wei CHEN Jun 《China Communications》 SCIE CSCD 2015年第6期22-32,共11页
The message blinding method is the most efficient and secure countermeasure against first-order differential power analysis(DPA).Although cross correlation attacks(CCAs) were given for defeating message blinding metho... The message blinding method is the most efficient and secure countermeasure against first-order differential power analysis(DPA).Although cross correlation attacks(CCAs) were given for defeating message blinding methods,however searching for correlation points is difficult for noise,misalignment in practical environment.In this paper,we propose an optimized cross correlation power attack for message blinding exponentiation algorithms.The attack method can select the more correlative power points of share one operation in the modular multiplication by comparing variances between correlation coefficients.Further we demonstrate that the attack method is more efficient in experiments with hardware implementation of RSA on a crypto chip card.In addition to the proposed CCA method can recovery all 1024 bits secret key and recognition rate increases to 100%even when the recorded signals are noisy. 展开更多
关键词 side channel attack correlationpower analysis cross correlation attacks module exponentiation.
在线阅读 下载PDF
FAST CORRELATION ATTACKS ON BLUETOOTH COMBINER
2
作者 Ma Weiju Feng Dengguo 《Journal of Electronics(China)》 2006年第6期888-891,共4页
A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover... A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover the secret key. We give the computing complexities of the attack algorithm according to different lengths of the known keystream. The result is less time-consuming than before. It is also shown that the secu-rity of the modified Bluetooth combiner by Hermelin and Nyberg is not significantly enhanced. 展开更多
关键词 Bluetooth combiner Combiner with memory correlation attacks
在线阅读 下载PDF
Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion
3
作者 Zehui Qi Sixing Wu Jianbin Li 《Computers, Materials & Continua》 2025年第11期3739-3766,共28页
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail... False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model. 展开更多
关键词 Power grid security adaptive neighborhood selection spatio-temporal correlation false data injection attacks localization
在线阅读 下载PDF
Abnormal Event Correlation and Detection Based on Network Big Data Analysis 被引量:2
4
作者 Zhichao Hu Xiangzhan Yu +1 位作者 Jiantao Shi Lin Ye 《Computers, Materials & Continua》 SCIE EI 2021年第10期695-711,共17页
With the continuous development of network technology,various large-scale cyber-attacks continue to emerge.These attacks pose a severe threat to the security of systems,networks,and data.Therefore,how to mine attack p... With the continuous development of network technology,various large-scale cyber-attacks continue to emerge.These attacks pose a severe threat to the security of systems,networks,and data.Therefore,how to mine attack patterns from massive data and detect attacks are urgent problems.In this paper,an approach for attack mining and detection is proposed that performs tasks of alarm correlation,false-positive elimination,attack mining,and attack prediction.Based on the idea of CluStream,the proposed approach implements a flow clustering method and a two-step algorithm that guarantees efficient streaming and clustering.The context of an alarm in the attack chain is analyzed and the LightGBM method is used to perform falsepositive recognition with high accuracy.To accelerate the search for the filtered alarm sequence data to mine attack patterns,the PrefixSpan algorithm is also updated in the store strategy.The updated PrefixSpan increases the processing efficiency and achieves a better result than the original one in experiments.With Bayesian theory,the transition probability for the sequence pattern string is calculated and the alarm transition probability table constructed to draw the attack graph.Finally,a long-short-term memory network and embedding word-vector method are used to perform online prediction.Results of numerical experiments show that the method proposed in this paper has a strong practical value for attack detection and prediction. 展开更多
关键词 attack scene false positive alarm correlation sequence mining multi-step attack
在线阅读 下载PDF
In‑depth Correlation Power Analysis Attacks on a Hardware Implementation of CRYSTALS‑Dilithium
5
作者 Huaxin Wang Yiwen Gao +2 位作者 Yuejun Liu Qian Zhang Yongbin Zhou 《Cybersecurity》 2025年第2期229-241,共13页
During the standardisation process of post-quantum cryptography,NIST encourages research on side-channel analysis for candidate schemes.As the recommended lattice signature scheme,CRYSTALS-Dilithium,when implemented o... During the standardisation process of post-quantum cryptography,NIST encourages research on side-channel analysis for candidate schemes.As the recommended lattice signature scheme,CRYSTALS-Dilithium,when implemented on hardware,has seen limited research on side-channel analysis,and current attacks are incomplete or requires a substantial quantity of traces.Therefore,we conducted a more complete analysis to investigate the leakage of an FPGA implementation of CRYSTALS-Dilithium using the Correlation Power Analysis(CPA)method,where with a minimum of 70,000 traces partial private key coefficients can be recovered.Furthermore,we optimise the attack by extracting Point-of-Interests using known information due to parallelism(named CPA-PoI)and by iteratively utilising parallel leakages(named CPA-ITR).Our experimental results show that CPA-PoI reduces the number of traces by up to 16.67%,CPA-ITR by up to 25%,and both increase the number of recovered key coefficients by up to 55.17% and 93.10% using the same number of traces.They outperfom the CPA method.As a result,it suggests that the FPGA implementation of CRYSTALS-Dilithium is more vulnerable than thought before to side-channel analysis. 展开更多
关键词 CRYSTALS-Dilithium Post-Quantum Cryptography correlation Power Analysis FPGA Side-Channel attack
原文传递
Multi-Step Detection of Simplex and Duplex Wormhole Attacks over Wireless Sensor Networks
6
作者 Abrar M.Alajlan 《Computers, Materials & Continua》 SCIE EI 2022年第3期4241-4259,共19页
Detection of thewormhole attacks is a cumbersome process,particularly simplex and duplex over thewireless sensor networks(WSNs).Wormhole attacks are characterized as distributed passive attacks that can destabilize or... Detection of thewormhole attacks is a cumbersome process,particularly simplex and duplex over thewireless sensor networks(WSNs).Wormhole attacks are characterized as distributed passive attacks that can destabilize or disable WSNs.The distributed passive nature of these attacks makes them enormously challenging to detect.The main objective is to find all the possible ways in which how the wireless sensor network’s broadcasting character and transmission medium allows the attacker to interrupt network within the distributed environment.And further to detect the serious routing-disruption attack“Wormhole Attack”step by step through the different network mechanisms.In this paper,a new multi-step detection(MSD)scheme is introduced that can effectively detect the wormhole attacks for WSN.The MSD consists of three algorithms to detect and prevent the simplex and duplex wormhole attacks.Furthermore,the proposed scheme integrated five detection modules to systematically detect,recover,and isolate wormhole attacks.Simulation results conducted inOMNET++show that the proposedMSDhas lower false detection and false toleration rates.Besides,MSDcan effectively detect wormhole attacks in a completely distributed network environment,as suggested by the simulation results. 展开更多
关键词 Wireless sensor network wormhole attack node validation multi-step detection
在线阅读 下载PDF
针对物联网设备的旁路攻击及防御方法的研究 被引量:4
7
作者 何乐生 冯毅 +2 位作者 岳远康 杨崇宇 胡崇辉 《通信学报》 北大核心 2025年第2期166-175,共10页
物联网设备通常使用计算能力受限的微控制器来实现,因而只能采用轻量级对称加密算法来保证其数据安全,且其自身的特点决定了只能被部署在开放环境中,极易遭受旁路攻击。针对这一问题,在基于自主设计的旁路攻击验证平台上开展实验,并提... 物联网设备通常使用计算能力受限的微控制器来实现,因而只能采用轻量级对称加密算法来保证其数据安全,且其自身的特点决定了只能被部署在开放环境中,极易遭受旁路攻击。针对这一问题,在基于自主设计的旁路攻击验证平台上开展实验,并提出了安全密钥管理方案及改进的S盒设计,作为旁路攻击防御方法。验证平台由两级差分放大器和抗干扰有限冲激响应(FIR)滤波器构成,能够捕捉微弱的功耗变化,并设计了针对轻量级加密算法的两轮相关能量攻击。通过获取正确密钥相关系数置信度的评估方法,在对PRESENT算法的3 000条功耗曲线进行10 000次攻击后,成功率超过96%,正确密钥的相关性均值均超过0.6,在95%的置信水平下,拥有狭窄的置信区间,而采用改进后的算法进行相同实验时,攻击成功率仅为9.12%。 展开更多
关键词 物联网安全 轻量级密码 旁路攻击 相关能量分析
在线阅读 下载PDF
基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测 被引量:4
8
作者 席磊 王文卓 +3 位作者 白芳岩 陈洪军 彭典名 李宗泽 《电网技术》 北大核心 2025年第2期824-833,I0112-I0114,共13页
面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线... 面向高维复杂的电力量测数据,现有攻击定位检测方法存在定位精度差的问题。为此该文提出一种基于最大信息系数-双层置信极端梯度提升树的电网虚假数据注入攻击定位检测方法。所提方法引入最大信息系数对量测数据进行特征选择,能够非线性地衡量数据特征之间的关联性,且公平地根据一个特征变量中包含另一个特征变量的信息量来去除冗余特征,有效解决虚假数据注入攻击定位检测方法普遍面临的量测数据高维冗余问题;同时提出一种具有正反馈信息传递作用的双层置信极端梯度提升树来对各节点状态进行分类,通过结合电网拓扑关系学习标签相关性,从而有选择性地利用前序标签有效预测信息,来减少后续分类器学习到的前序标签预测信息中包含的错误,最终实现对受攻击位置的精确定位。在IEEE-14、IEEE-57节点系统上进行大量仿真,算例结果验证了所提方法的有效性,且相较于其他方法具有更高的准确率、精度、召回率、F1值和AUC(area under curve)值。 展开更多
关键词 虚假数据注入攻击 最大信息系数 双层置信 极端梯度提升树 标签相关性
原文传递
基于自适应加权混合预测的电网虚假数据注入攻击检测
9
作者 束洪春 杨永银 +2 位作者 赵红芳 许畅 赵学专 《电网技术》 北大核心 2025年第3期1246-1256,I0095,共12页
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先... 电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。 展开更多
关键词 电力信息物理系统 加权灰色关联分析 无迹卡尔曼滤波 最小二乘支持向量机 虚假数据攻击 攻击检测指数
原文传递
HGNM:基于长短期流图及混合图神经网络的饱和攻击检测方法
10
作者 李佳松 崔允贺 +3 位作者 申国伟 郭春 陈意 蒋朝惠 《计算机工程》 北大核心 2025年第8期215-226,共12页
软件定义网络(SDN)的控制平面与数据平面解耦,该特性使其广泛应用于数据中心、物联网、云网络等大规模网络场景中。然而,这种解耦的网络架构也使其面临饱和攻击的挑战。基于图神经网络(GNN)检测饱和攻击是SDN中的研究热点,但目前GNN中... 软件定义网络(SDN)的控制平面与数据平面解耦,该特性使其广泛应用于数据中心、物联网、云网络等大规模网络场景中。然而,这种解耦的网络架构也使其面临饱和攻击的挑战。基于图神经网络(GNN)检测饱和攻击是SDN中的研究热点,但目前GNN中常用的k近邻(k-NN)图忽略了短期流特征,无法有效聚合节点信息,使模型不能充分利用流的时间特征。为利用流的长短期特征提高饱和攻击检测精度,提出一种基于长短期流图及混合GNN的饱和攻击检测方法HGNM。该方法通过设置2个采样时间来收集流的长短期特征,同时基于灰色关联系数设计一种长短期流图生成方法LSGH以构建长短期流图,使流图包含流的全部特征。此外,设计一种混合GNN模型GU-GCN,通过并联GRU与GCN来获取流的时间特征与空间特征,从而提高模型检测饱和攻击的精度。实验结果表明:在生成图上,相比于k-NN算法和CRAM算法,LSGH方法能有效提高模型的检测精度;与其他模型相比,GU-GCN模型在准确率、精确率、召回率、F1值、ROC曲线、PR曲线、混淆矩阵方面都有性能提升。 展开更多
关键词 软件定义网络 饱和攻击检测 图神经网络 长短期流图 灰色关联系数
在线阅读 下载PDF
面向生成式对抗网络的贝叶斯成员推理攻击
11
作者 尚游 缪祥华 《计算机应用》 北大核心 2025年第10期3252-3258,共7页
目前,关于生成式对抗网络(GAN)中成员推理攻击(MIA)的准确率与生成模型自身泛化能力之间的关系存在争议,因此有效的攻击手段难以广泛应用,这限制了生成模型的改进。为了解决上述问题,提出一种基于贝叶斯估计(BE)的灰盒MIA方案,旨在灰盒... 目前,关于生成式对抗网络(GAN)中成员推理攻击(MIA)的准确率与生成模型自身泛化能力之间的关系存在争议,因此有效的攻击手段难以广泛应用,这限制了生成模型的改进。为了解决上述问题,提出一种基于贝叶斯估计(BE)的灰盒MIA方案,旨在灰盒场景下高效匹配参数以实现最优攻击。首先,在黑盒条件下设计目标模型和影子模型的训练框架,以获取攻击模型所需的参数知识;其次,结合并利用这些有效参数信息不断更新目标函数,从而训练攻击模型;最后,将训练好的攻击模型应用于MIA。实验结果表明,与现有的白盒、黑盒攻击方案相比,基于BE的灰盒攻击方案的准确率平均分别提升了15.89%和21.64%。以上研究结果展示了参数暴露与攻击成功率(ASR)之间的直接联系,也为未来该领域开发防御性策略提供了方向。 展开更多
关键词 机器学习 生成式对抗网络 成员推理攻击 贝叶斯估计 关联分析
在线阅读 下载PDF
肠道菌群、血清BMAL1与儿童支气管哮喘急性发作严重程度的相关性分析
12
作者 陈志云 滕燕 +1 位作者 贾立山 王倩倩 《临床肺科杂志》 2025年第11期1674-1679,共6页
目的对肠道菌群、血清脑和肌肉芳香烃受体核转位蛋白1(BMAL1)与儿童支气管哮喘急性发作严重程度的相关性进行探讨分析。方法选取2023年8月至2024年8月本院收治的167例支气管哮喘儿童(研究组)及167例体检健康儿童(对照组)为研究对象,依... 目的对肠道菌群、血清脑和肌肉芳香烃受体核转位蛋白1(BMAL1)与儿童支气管哮喘急性发作严重程度的相关性进行探讨分析。方法选取2023年8月至2024年8月本院收治的167例支气管哮喘儿童(研究组)及167例体检健康儿童(对照组)为研究对象,依据哮喘急性发作严重程度判定标准分为轻度(n=77)、中度(n=58)和重度(n=32)组;采用qRT-PCR检测所有受试儿童肠道菌群(肠球菌、大肠埃希菌、双歧杆菌、乳杆菌)数量及血清BMAL1表达水平;采用Spearman法分析肠道菌群、血清BMAL1与支气管哮喘急性发作严重程度的相关性;采用多因素Logistic回归分析重度哮喘发作的影响因素。采用ROC曲线分析BMAL1预测支气管哮喘患儿急性发作严重程度的效能。结果研究组顺产、母乳喂养人数占比及血氧饱和度低于对照组,家族哮喘史占比高于对照组(P<0.05)。研究组儿童粪便中双歧杆菌、乳杆菌数量及血清BMAL1表达水平低于对照组,大肠埃希菌、肠球菌的数量高于对照组(P<0.05)。双歧杆菌、乳杆菌数量及血清BMAL1表达水平在轻度、中度、重度组中依次降低,大肠埃希菌、肠球菌的数量依次升高(P<0.05)。双歧杆菌、乳杆菌数量及血清BMAL1表达水平与支气管哮喘儿童严重程度呈负相关,大肠埃希菌、肠球菌数量与支气管哮喘儿童严重程度呈正相关(P<0.05)。双歧杆菌、乳杆菌数量及血清BMAL1表达水平为重度哮喘儿童的保护因素,大肠埃希菌、肠球菌数量为重度哮喘患儿的危险因素(P<0.05)。BMAL1水平预测重度支气管哮喘患儿的AUC为0.847(95%CI:0.805~0.889),敏感度为84.40%,特异度为71.90%,以BMAL1<0.72判定为支气管哮喘重度高风险患儿。结论在支气管哮喘儿童中双歧杆菌、乳杆菌数量及血清BMAL1表达水平降低,大肠埃希菌、肠球菌的数量升高,肠道菌群、血清BMAL1与儿童支气管哮喘急性发作严重程度密切相关。 展开更多
关键词 肠道菌群 BMAL1 儿童支气管哮喘 急性发作 严重程度 相关性
暂未订购
双源CT脑灌注成像与短暂性脑缺血发作ABCD2评分的相关性研究
13
作者 焦向锋 王碧昊 +1 位作者 段燕东 肖雁 《中国CT和MRI杂志》 2025年第10期22-25,共4页
目的分析双源CT脑灌注成像(CTP)与短暂性脑缺血发作(TIA)患者ABCD2评分的相关性。方法选取大同市第五人民医院2023年3月至2024年8月期间收治的89例TIA患者为研究对象,受试对象均行CTP检查,按照ABCD2评分将患者分为低危组(n=42)及中高危... 目的分析双源CT脑灌注成像(CTP)与短暂性脑缺血发作(TIA)患者ABCD2评分的相关性。方法选取大同市第五人民医院2023年3月至2024年8月期间收治的89例TIA患者为研究对象,受试对象均行CTP检查,按照ABCD2评分将患者分为低危组(n=42)及中高危组(n=47),对比两组患者CTP参数[局部脑血流流量(CBF)、脑血流容量(CBV)、对比剂平均通过时间(MTT)和达峰时间(Tmax)],并采用Pearson相关性分析CTP各项参数与ABCD2评分的相关性。结果低危组CBF、CBV高于中高危组,MTT、Tmax低于中高危组(P<0.05)。Pearson相关性分析结果显示,CBF、CBV与ABCD2评分呈现负相关,MTT、Tmax与ABCD2评分呈现正相关(P<0.05)。结论CTP与TIA患者ABCD2评分存在一定的相关性,通过CTP检查可以为TIA患者脑缺血提供定量分析,为ABCD2评分提供客观依据。 展开更多
关键词 短暂性脑缺血发作 ABCD2评分 双源CT脑灌注成像 相关性
暂未订购
噪声相关信息物理系统的安全融合估计
14
作者 葛文标 牛梦飞 +2 位作者 吕跃祖 李中翔 房肖 《控制工程》 北大核心 2025年第4期595-601,613,共8页
针对一类噪声异步互相关的信息物理系统,研究了存在隐蔽攻击的情况下分布式安全融合估计问题。首先,考虑过程噪声与量测噪声的异步相关性,设计了一种依赖相关强度的类卡尔曼滤波局部估计器,并给出了确保估计器收敛的充分条件。其次,围... 针对一类噪声异步互相关的信息物理系统,研究了存在隐蔽攻击的情况下分布式安全融合估计问题。首先,考虑过程噪声与量测噪声的异步相关性,设计了一种依赖相关强度的类卡尔曼滤波局部估计器,并给出了确保估计器收敛的充分条件。其次,围绕一种线性隐蔽攻击模型,通过最大化局部估计均方误差得到了迭代最优攻击参数及相应的恶化局部估计。最后,基于矩阵加权策略融合局部估计,设计了一种分布式安全融合估计器,降低了隐蔽攻击对系统的影响,改善了融合估计性能。仿真结果验证了所设计的分布式安全融合估计器的有效性。 展开更多
关键词 信息物理系统 噪声相关 隐蔽攻击 分布式融合估计
原文传递
低时延智能体网络中基于三阶段关联验证的伪造链路攻击检测
15
作者 张峰 俸皓 +3 位作者 周秀民 章茂淳 陈镇铭 刘玉明 《计算机研究与发展》 北大核心 2025年第10期2495-2511,共17页
面向低时延的智能体网络环境,研究了一种基于关联链路验证的伪造链路攻击检测方法.在该网络环境下,正常链路与伪造链路在测量时延等关键指标上的统计特征差异较小,并且背景流量和协调器过载攻击的影响会放大测量误差,但缩小该差异会导... 面向低时延的智能体网络环境,研究了一种基于关联链路验证的伪造链路攻击检测方法.在该网络环境下,正常链路与伪造链路在测量时延等关键指标上的统计特征差异较小,并且背景流量和协调器过载攻击的影响会放大测量误差,但缩小该差异会导致现有方法的检测性能骤降.对此,提出一种基于关联链路验证的伪造链路攻击检测方法,该方法包含3个阶段:首先,采用一种有效时延转换方法缓解测量误差的影响,并将处理后的测量时延等转化为链路性能指标;然后,根据提出的多径传输模拟方法,将关联链路之间的性能差异转化为易于观测的统计特征;最后,基于极值理论和概率分布拟合方法确定统计特征的阈值,用于伪造链路的检测.仿真实验结果表明,在不同的网络规模和攻击场景下,所提出的方法能够有效地检测低时延智能体网络中的伪造链路攻击,并且在检测性能方面明显优于现有的相关方法,F1分数提升达20%~30%.特别地,当链路传输时延低至0.1 ms时,仍然能取得95.23%的检测率和0.28%的误判率,显示出良好的鲁棒性. 展开更多
关键词 智能体网络 低时延 伪造链路攻击 关联链路验证 极值理论
在线阅读 下载PDF
面向模块化格基密钥封装机制算法多项式乘法的侧信道安全防护关键技术研究
16
作者 赵毅强 孔金笛 +5 位作者 付玉成 张启智 叶茂 夏显召 宋昕彤 何家骥 《电子与信息学报》 北大核心 2025年第9期3126-3136,共11页
后量子密码算法CRYSTALS-Kyber已被美国国家标准与技术研究院(NIST)标准化为唯一的模块化格基密钥封装机制方案(ML-KEM),以抵御大规模量子计算机的攻击。虽然后量子密码通过数学理论保证了算法的安全性,但在密码实现运算过程中仍面临侧... 后量子密码算法CRYSTALS-Kyber已被美国国家标准与技术研究院(NIST)标准化为唯一的模块化格基密钥封装机制方案(ML-KEM),以抵御大规模量子计算机的攻击。虽然后量子密码通过数学理论保证了算法的安全性,但在密码实现运算过程中仍面临侧信道威胁。该文针对当前后量子密码算法硬件实现中存在的侧信道泄露风险,提出一种随机伪轮隐藏防护技术,通过动态插入冗余模运算与线性反馈移位寄存器(LFSR)随机调度机制,破坏多项式逐点乘法(PWM)关键操作的时序特征,从而混淆侧信道信息相关性。为了验证其有效性,在Xilinx Spartan-6 FPGA平台对安全增强前后的Kyber解密模块进行实现,并开展基于选择密文的相关功耗分析(CPA)。实验结果表明,防护前攻击者仅需897~1 650条功耗迹线即可恢复Kyber长期密钥;防护后在10 000条迹线下仍无法成功破解,破解密钥所需迹线数量显著提高。同时,相较现有的Kyber防护实现方案,该文的安全增强设计在面积开销上优于其他的隐藏方案。 展开更多
关键词 后量子密码算法 侧信道攻击 相关功耗分析 多项式乘法 Kyber
在线阅读 下载PDF
基于均匀流型逼近与投影的高级加密标准算法相关功耗分析方法
17
作者 张润莲 唐瑞锋 +1 位作者 王蒿 武小年 《计算机应用》 北大核心 2025年第6期1895-1901,共7页
侧信道攻击(SCA)中所采集的能量迹数据的高噪声和高维度大幅降低了SCA的效率和密钥恢复的准确率。针对上述问题,提出一种基于均匀流型逼近与投影(UMAP)的高级加密标准(AES)算法相关功耗分析(CPA)方法。所提方法基于欧氏距离计算能量迹... 侧信道攻击(SCA)中所采集的能量迹数据的高噪声和高维度大幅降低了SCA的效率和密钥恢复的准确率。针对上述问题,提出一种基于均匀流型逼近与投影(UMAP)的高级加密标准(AES)算法相关功耗分析(CPA)方法。所提方法基于欧氏距离计算能量迹数据的邻近点集合。首先,通过构建邻接图并计算邻近点之间的相似度得到加权邻接图,从而捕获能量迹数据之间的位置关系以保留数据的局部结构特征;其次,利用拉普拉斯矩阵描述邻接图的结构关系,并通过特征分解取特征值较小的特征向量作为初始化的低维数据;同时,为了保留数据的全局结构特征,使用二进制交叉熵作为优化函数调整数据在低维空间中的位置;此外,为了提升计算效率,在梯度下降过程中使用力导向图布局算法;最后,对降维后的数据进行相关功耗攻击以恢复密钥。实验结果表明,UMAP方法能够有效保留原始能量迹数据的局部和全局结构特征;所提方法能够提高能量迹数据和假设功耗泄露模型之间的相关性,减少恢复密钥所需的能量迹条数,具体地,所提方法恢复单个密钥字节需要的能量迹条数为180,恢复全部16个密钥字节需要的能量迹条数为700;相较于等距特征映射(ISOMAP)降维方法,所提方法恢复所有密钥字节所需的能量迹条数减少了36.4%。 展开更多
关键词 侧信道攻击 均匀流型逼近与投影 相关功耗分析 数据降维 加权邻接图
在线阅读 下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:6
18
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 multi-step traffic flow prediction Graph convolutional network External factors Attentional encoder network Spatiotemporal correlation
在线阅读 下载PDF
Black Hole and Sink Hole Attack Detection in Wireless Body Area Networks 被引量:1
19
作者 Rajesh Kumar Dhanaraj Lalitha Krishnasamy +1 位作者 Oana Geman Diana Roxana Izdrui 《Computers, Materials & Continua》 SCIE EI 2021年第8期1949-1965,共17页
In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthca... In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthcare WBANs are the black hole and sink hole attacks.Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path.Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness.This work proposes a hybrid detection framework for attacks by applying a Proportional Coinciding Score(PCS)and an MK-Means algorithm,which is a well-known machine learning technique used to raise attack detection accuracy and decrease computational difficulties while giving treatments for heartache and respiratory issues.First,the gathered training data feature count is reduced through data pre-processing in the PCS.Second,the pre-processed features are sent to the MK-Means algorithm for training the data and promoting classification.Third,certain attack detection measures given by the intrusion detection system,such as the number of data packages trans-received,are identified by the MK-Means algorithm.This study demonstrates that the MK-Means framework yields a high detection accuracy with a low packet loss rate,low communication overhead,and reduced end-to-end delay in the network and improves the accuracy of biomedical data. 展开更多
关键词 Wireless body area network black hole attack sink hole attack proportional coinciding score intrusion detection correlation rate
在线阅读 下载PDF
A multi-step attack-correlation method with privacy protection 被引量:2
20
作者 ZHANG Yongtang LUO Xianlu LUO Haibo 《Journal of Communications and Information Networks》 2016年第4期133-142,共10页
In the era of global Internet security threats,there is an urgent need for different organizations to cooperate and jointly fight against cyber attacks.We present an algorithm that combines a privacy-preserving techni... In the era of global Internet security threats,there is an urgent need for different organizations to cooperate and jointly fight against cyber attacks.We present an algorithm that combines a privacy-preserving technique and a multi-step attack-correlation method to better balance the privacy and availability of alarm data.This algorithm is used to construct multi-step attack scenarios by discovering sequential attack-behavior patterns.It analyzes the time-sequential characteristics of attack behaviors and implements a support-evaluation method.Optimized candidate attack-sequence generation is applied to solve the problem of pre-defined association-rule complexity,as well as expert-knowledge dependency.An enhanced k-anonymity method is applied to this algorithm to preserve privacy.Experimental results indicate that the algorithm has better performance and accuracy for multi-step attack correlation than other methods,and reaches a good balance between efficiency and privacy. 展开更多
关键词 network security multi-step attack intrusion detection sequential pattern privacy protection data mining
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部