期刊文献+
共找到2,355篇文章
< 1 2 118 >
每页显示 20 50 100
Research on Airborne Point Cloud Data Registration Using Urban Buildings as an Example
1
作者 Yajun Fan Yujun Shi +1 位作者 Chengjie Su Kai Wang 《Journal of World Architecture》 2025年第4期35-42,共8页
Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)... Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)products.Combined with image data,this technology can further enrich and extract spatial geographic information.However,practically,due to the limited operating range of airborne LiDAR and the large area of task,it would be necessary to perform registration and stitching process on point clouds of adjacent flight strips.By eliminating grow errors,the systematic errors in the data need to be effectively reduced.Thus,this paper conducts research on point cloud registration methods in urban building areas,aiming to improve the accuracy and processing efficiency of airborne LiDAR data.Meanwhile,an improved post-ICP(Iterative Closest Point)point cloud registration method was proposed in this study to determine the accurate registration and efficient stitching of point clouds,which capable to provide a potential technical support for applicants in related field. 展开更多
关键词 Airborne LiDAR point cloud registration point cloud data processing Systematic error
在线阅读 下载PDF
Multi-sensor missile-borne LiDAR point cloud data augmentation based on Monte Carlo distortion simulation
2
作者 Luda Zhao Yihua Hu +4 位作者 Fei Han Zhenglei Dou Shanshan Li Yan Zhang Qilong Wu 《CAAI Transactions on Intelligence Technology》 2025年第1期300-316,共17页
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta... Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms. 展开更多
关键词 data augmentation LIDAR missile-borne imaging Monte Carlo simulation point cloud
在线阅读 下载PDF
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment
3
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3D point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
在线阅读 下载PDF
PH-shape:an adaptive persistent homology-based approach for building outline extraction from ALS point cloud data
4
作者 Gefei Kong Hongchao Fan 《Geo-Spatial Information Science》 CSCD 2024年第4期1107-1117,共11页
Building outline extraction from segmented point clouds is a critical step of building footprint generation.Existing methods for this task are often based on the convex hull and α-shape algorithm.There are also some ... Building outline extraction from segmented point clouds is a critical step of building footprint generation.Existing methods for this task are often based on the convex hull and α-shape algorithm.There are also some methods using grids and Delaunay triangulation.The common challenge of these methods is the determination of proper parameters.While deep learning-based methods have shown promise in reducing the impact and dependence on parameter selection,their reliance on datasets with ground truth information limits the generalization of these methods.In this study,a novel unsupervised approach,called PH-shape,is proposed to address the aforementioned challenge.The methods of Persistence Homology(PH)and Fourier descriptor are introduced into the task of building outline extraction.The PH from the theory of topological data analysis supports the automatic and adaptive determination of proper buffer radius,thus enabling the parameter-adaptive extraction of building outlines through buffering and“inverse”buffering.The quantitative and qualitative experiment results on two datasets with different point densities demonstrate the effectiveness of the proposed approach in the face of various building types,interior boundaries,and the density variation in the point cloud data of one building.The PH-supported parameter adaptivity helps the proposed approach overcome the challenge of parameter determination and data variations and achieve reliable extraction of building outlines. 展开更多
关键词 Building outline extraction point cloud data persistent homology boundary tracing
原文传递
RailPC: A large-scale railway point cloud semantic segmentation dataset
5
作者 Tengping Jiang Shiwei Li +7 位作者 Qinyu Zhang Guangshuai Wang Zequn Zhang Fankun Zeng Peng An Xin Jin Shan Liu Yongjun Wang 《CAAI Transactions on Intelligence Technology》 2024年第6期1548-1560,共13页
Semantic segmentation in the context of 3D point clouds for the railway environment holds a significant economic value,but its development is severely hindered by the lack of suitable and specific datasets.Additionall... Semantic segmentation in the context of 3D point clouds for the railway environment holds a significant economic value,but its development is severely hindered by the lack of suitable and specific datasets.Additionally,the models trained on existing urban road point cloud datasets demonstrate poor generalisation on railway data due to a large domain gap caused by non-overlapping special/rare categories,for example,rail track,track bed etc.To harness the potential of supervised learning methods in the domain of 3D railway semantic segmentation,we introduce RailPC,a new point cloud benchmark.RailPC provides a large-scale dataset with rich annotations for semantic segmentation in the railway environment.Notably,RailPC contains twice the number of annotated points compared to the largest available mobile laser scanning(MLS)point cloud dataset and is the first railway-specific 3D dataset for semantic segmentation.It covers a total of nearly 25 km railway in two different scenes(urban and mountain),with 3 billion points that are finely labelled as 16 most typical classes with respect to railway,and the data acquisition process is completed in China by MLS systems.Through extensive experimentation,we evaluate the performance of advanced scene understanding methods on the annotated dataset and present a synthetic analysis of semantic segmentation results.Based on our findings,we establish some critical challenges towards railway-scale point cloud semantic segmentation.The dataset is available at https://github.com/NNU-GISA/GISA-RailPC,and we will continuously update it based on community feedback. 展开更多
关键词 data benchmark MLS point clouds railway scene semantic segmentation
在线阅读 下载PDF
A review of road 3D modeling based on light detection and ranging point clouds 被引量:1
6
作者 Bin Yu Yuchen Wang +4 位作者 Qihang Chen Xiaoyang Chen Yuqin Zhang Kaiyue Luan Xiaole Ren 《Journal of Road Engineering》 2024年第4期386-398,共13页
Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of ... Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds. 展开更多
关键词 Road engineering LiDAR data 3D modeling point cloud SEGMENTATION Key feature extraction
在线阅读 下载PDF
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:10
7
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3D point cloud data.
原文传递
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
8
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3D lidar point cloud data augmentation RandomFusion semantic segmentation
在线阅读 下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
9
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
在线阅读 下载PDF
基于Transformer和PointNet++的毫米波雷达人体姿态估计 被引量:2
10
作者 李阳 刘毅 +3 位作者 李浩 张刚 徐明枫 郝崇清 《计算机科学》 北大核心 2025年第S1期433-441,共9页
人体姿态估计作为动作识别领域中的研究热题被广泛地应用在医疗、安防和监控等方面,对推动相关行业的智能化发展具有重要意义。但目前基于图像的人体姿态估计对环境要求较高且隐私性差。基于此,提出了一种基于毫米波雷达点云的人体姿态... 人体姿态估计作为动作识别领域中的研究热题被广泛地应用在医疗、安防和监控等方面,对推动相关行业的智能化发展具有重要意义。但目前基于图像的人体姿态估计对环境要求较高且隐私性差。基于此,提出了一种基于毫米波雷达点云的人体姿态估计方法,该方法使用PointNet++对毫米波雷达点云进行特征提取,与基于CNN的姿态估计方法相比,其在各关节点的MSE,MAE,RMSE值更低。此外,为了解决毫米波雷达点云稀疏的问题,使用了一种多帧点云拼接策略,以增加点云的数量,其中以拼接三帧点云为输入的模型相比于原始模型的MSE和MAE值分别降低了0.22 cm和0.72 cm,有效地缓解了点云过于稀疏的问题。最后,为了充分利用不同点云之间的时序特征,将Transformer与PointNet++相结合,并通过消融实验证明了多帧点云拼接策略和加入Transformer结构这两种方法的有效性,其MSE和MAE两个指标值分别达到了0.59 cm和5.41 cm,为实现性能更优的射频人体姿态估计提供了一种新思路。 展开更多
关键词 人体姿态估计 毫米波雷达 pointNet++ 点云数据 TRANSFORMER
在线阅读 下载PDF
Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data 被引量:4
11
作者 Yueqian SHEN Jinguo WANG +2 位作者 Jinhu WANG Wei DUAN Vagner G.FERREIRA 《Journal of Geodesy and Geoinformation Science》 2021年第2期56-71,共16页
Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minute... Tunnel deformation monitoring is a crucial task to evaluate tunnel stability during the metro operation period.Terrestrial Laser Scanning(TLS)can collect high density and high accuracy point cloud data in a few minutes as an innovation technique,which provides promising applications in tunnel deformation monitoring.Here,an efficient method for extracting tunnel cross-sections and convergence analysis using dense TLS point cloud data is proposed.First,the tunnel orientation is determined using principal component analysis(PCA)in the Euclidean plane.Two control points are introduced to detect and remove the unsuitable points by using point cloud division and then the ground points are removed by defining an elevation value width of 0.5 m.Next,a z-score method is introduced to detect and remove the outlies.Because the tunnel cross-section’s standard shape is round,the circle fitting is implemented using the least-squares method.Afterward,the convergence analysis is made at the angles of 0°,30°and 150°.The proposed approach’s feasibility is tested on a TLS point cloud of a Nanjing subway tunnel acquired using a FARO X330 laser scanner.The results indicate that the proposed methodology achieves an overall accuracy of 1.34 mm,which is also in agreement with the measurements acquired by a total station instrument.The proposed methodology provides new insights and references for the applications of TLS in tunnel deformation monitoring,which can also be extended to other engineering applications. 展开更多
关键词 CROSS-SECTION control point convergence analysis z-score method terrestrial laser scanning dense point cloud data
在线阅读 下载PDF
Syn-Aug:An Effective and General Synchronous Data Augmentation Framework for 3D Object Detection
12
作者 Huaijin Liu Jixiang Du +2 位作者 Yong Zhang Hongbo Zhang Jiandian Zeng 《CAAI Transactions on Intelligence Technology》 2025年第3期912-928,共17页
Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta... Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug. 展开更多
关键词 3D object detection data augmentation DIVERSITY GENERALIZATION point cloud ROBUSTNESS
在线阅读 下载PDF
Indoor Space Modeling and Parametric Component Construction Based on 3D Laser Point Cloud Data
13
作者 Ruzhe Wang Xin Li Xin Meng 《Journal of World Architecture》 2023年第5期37-45,共9页
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so... In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference. 展开更多
关键词 3D laser scanning technology Indoor space point cloud data Building information modeling(BIM)
在线阅读 下载PDF
基于PointCNN的煤场煤堆点云识别与体积计算
14
作者 费亦凡 张豪庆 俞更喜 《内蒙古电力技术》 2025年第4期95-100,共6页
针对人工盘煤成本高昂与激光测量方法精度受限等问题,提出基于PointCNN网络的煤场煤堆点云识别与体积计算方法。首先,利用欧式距离对毫米波雷达获取的煤堆原始点云数据进行分割;其次,采用PointCNN网络精确识别目标煤堆点云数据,并采用De... 针对人工盘煤成本高昂与激光测量方法精度受限等问题,提出基于PointCNN网络的煤场煤堆点云识别与体积计算方法。首先,利用欧式距离对毫米波雷达获取的煤堆原始点云数据进行分割;其次,采用PointCNN网络精确识别目标煤堆点云数据,并采用Delaunay三角剖分算法及投影法实现煤堆点云数据的三维曲面重建和煤堆的体积计算;最后,以某燃煤电站煤场为研究对象,对所提方法进行验证。结果表明,相较于传统测量方法,本文所提方法精度更高,相对误差低于5%,能够满足燃煤电站对煤场煤堆的体积测量要求。 展开更多
关键词 煤堆 点云数据 毫米波雷达 欧式距离 pointCNN网络 DELAUNAY三角剖分 投影法
在线阅读 下载PDF
基于改进PointNet++的船体分段合拢面构件智能识别算法研究 被引量:1
15
作者 李瑞 赵怡荣 +2 位作者 霍世霖 汪骥 史卫东 《中国舰船研究》 CSCD 北大核心 2024年第6期173-179,共7页
[目的]三维扫描仪获得的船体分段合拢面点云数据,具有精度高、数据量大的优势,能够很好地反映分段合拢面的建造状况。由于现有的PointNet++网络无法处理大容量点云数据,因此提出一种基于改进PointNet++的船体分段合拢面构件智能识别算法... [目的]三维扫描仪获得的船体分段合拢面点云数据,具有精度高、数据量大的优势,能够很好地反映分段合拢面的建造状况。由于现有的PointNet++网络无法处理大容量点云数据,因此提出一种基于改进PointNet++的船体分段合拢面构件智能识别算法,实现针对大容量船体分段合拢面点云数据构件的智能识别。[方法]基于超体素生长理论对船体分段合拢面点云数据进行分割及简化,构建船体分段合拢面点云数据集,并使用该数据集训练基于深度学习理论改进的PointNet++网络。[结果]网络模型在船体分段合拢面点云数据训练集和测试集上的收敛结果趋于稳定,在测试集上识别准确率达到90.012%。[结论]该方法具有良好的识别能力,能够完成船体分段合拢面构件的智能识别。 展开更多
关键词 船舶建造 人工智能 船体分段合拢面 点云数据 超体素生长 pointNet++ 智能识别
在线阅读 下载PDF
基于改进PointNet++的输电线路关键部位点云语义分割研究 被引量:4
16
作者 杨文杰 裴少通 +3 位作者 刘云鹏 胡晨龙 杨瑞 张行远 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1943-1953,I0009,共12页
输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet+... 输电线路的关键部位包括塔身、导线、绝缘子、避雷线以及引流线,无人机精细化导航的首要任务是构造输电线路的点云地图并从中分割出上述部位。为解决现有算法在输电线路的绝缘子、引流线等精细结构分割时精度低的问题,通过改进PointNet++算法,提出了一种面向输电线路精细结构的点云分割方法。首先,基于无人机机载激光雷达在现场采集的点云数据,构造了输电线路点云分割数据集;其次,通过对比实验,筛选出在本输电线路场景下合理的数据增强方法,并对数据集进行了数据增强;最后,将自注意力机制以及倒置残差结构和PointNet++相结合,设计了输电线路关键部位点云语义分割算法。实验结果表明:该改进PointNet++算法在全场景输电线路现场点云数据作为输入的前提下,首次实现了对引流线、绝缘子等输电线路中精细结构和导线、杆塔塔身以及输电线路无关背景点的同时分割,平均交并比(mean intersection over union,mIoU)达80.79%,所有类别分割的平均F_(1)值(F1 score)达88.99%。 展开更多
关键词 点云深度学习 点云语义分割 数据增强 自注意力 倒置残差
原文传递
ALGORITHM OF PRETREATMENT ON AUTOMOBILE BODY POINT CLOUD 被引量:2
17
作者 GAO Feng ZHOU Yu DU Farong QU Weiwei XIONG Yonghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期71-74,共4页
As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea ... As point cloud of one whole vehicle body has the traits of large geometric dimension, huge data and rigorous reverse precision, one pretreatment algorithm on automobile body point cloud is put forward. The basic idea of the registration algorithm based on the skeleton points is to construct the skeleton points of the whole vehicle model and the mark points of the separate point cloud, to search the mapped relationship between skeleton points and mark points using congruence triangle method and to match the whole vehicle point cloud using the improved iterative closed point (ICP) algorithm. The data reduction algorithm, based on average square root of distance, condenses data by three steps, computing datasets' average square root of distance in sampling cube grid, sorting order according to the value computed from the first step, choosing sampling percentage. The accuracy of the two algorithms above is proved by a registration and reduction example of whole vehicle point cloud of a certain light truck. 展开更多
关键词 Reverse engineering point cloud registration Skeleton point Iterative closed point(ICP) data reduction
在线阅读 下载PDF
Progress and perspectives of point cloud intelligence 被引量:1
18
作者 Bisheng Yang Nobert Haala Zhen Dong 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第2期189-205,共17页
With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data ... With the rapid development of reality capture methods,such as laser scanning and oblique photogrammetry,point cloud data have become the third most important data source,after vector maps and imagery.Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science,spatial cognition,and smart cities.However,how to acquire high-quality three-dimensional(3D)geospatial information from point clouds has become a scientific frontier,for which there is an urgent demand in the fields of surveying and mapping,as well as geoscience applications.To address the challenges mentioned above,point cloud intelligence came into being.This paper summarizes the state-of-the-art of point cloud intelligence,with regard to acquisition equipment,intelligent processing,scientific research,and engineering applications.For this purpose,we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection,as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds.These projects were conducted at the Institute for Photogrammetry,the University of Stuttgart,which was initially headed by the late Prof.Ackermann.Finally,the development prospects of point cloud intelligence are summarized. 展开更多
关键词 point cloud big data point cloud intelligence semantic labeling structured modeling machine learning
原文传递
FPSMix: data augmentation strategy for point cloud classification
19
作者 Taiyan CHEN Xianghua YING 《Frontiers of Computer Science》 2025年第2期105-113,共9页
Data augmentation is a widely used regularization strategy in deep neural networks to mitigate overfitting and enhance generalization.In the context of point cloud data,mixing two samples to generate new training exam... Data augmentation is a widely used regularization strategy in deep neural networks to mitigate overfitting and enhance generalization.In the context of point cloud data,mixing two samples to generate new training examples has proven to be effective.In this paper,we propose a novel and effective approach called Farthest Point Sampling Mix(FPSMix)for augmenting point cloud data.Our method leverages farthest point sampling,a technique used in point cloud processing,to generate new samples by mixing points from two original point clouds.Another key innovation of our approach is the introduction of a significance-based loss function,which assigns weights to the soft labels of the mixed samples based on the classification loss of each part of the new sample that is separated from the two original point clouds.This way,our method takes into account the importance of different parts of the mixed sample during the training process,allowing the model to learn better global features.Experimental results demonstrate that our FPSMix,combined with the significance-based loss function,improves the classification accuracy of point cloud models and achieves comparable performance with state-of-the-art data augmentation methods.Moreover,our approach is complementary to techniques that focus on local features,and their combined use further enhances the classification accuracy of the baseline model. 展开更多
关键词 point cloud classification data augmentation loss function point cloud understanding point cloud analysis
原文传递
Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds:a case study with savanna trees in Benin
20
作者 Hospice A.Akpo Gilbert Atindogbe +3 位作者 Maxwell C.Obiakara Arios B.Adjinanoukon Madai Gbedolo Noel H.Fonton 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2415-2422,共8页
Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for s... Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for stem volume calculation.In this study,the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated.We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer.Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution,including cylinder,cone,paraboloid,neiloid and their respective fustrums.Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models.This reference volume was compared with the results of formulaic estimations.Tree stem profiles were further decomposed into different portions,approximately corresponding to the stump,butt logs and logs,and the suitability of each solid of revolution was assessed for simulating the resulting shapes.Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0%and 24.4%,respectively.Stems closely resembled fustrums of a paraboloid and a neiloid.Individual stem portions assumed different solids as follows:fustrums of paraboloid and neiloid were more prevalent from the stump to breast height,while a paraboloid closely matched stem shapes beyond this point.Therefore,a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids. 展开更多
关键词 Structure from motion photogrammetry point cloud data Stem volume Savanna species BENIN
在线阅读 下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部