期刊文献+
共找到820,353篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
1
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Optimal Secure Control of Networked Control Systems Under False Data Injection Attacks:A Multi-Stage Attack-Defense Game Approach
2
作者 Dajun Du Yi Zhang +1 位作者 Baoyue Xu Minrui Fei 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期821-823,共3页
Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by de... Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels. 展开更多
关键词 designing defense strategy networked control systems ncss alterations energy networked control systems false data injection attacks fdias strategywhile false data injection attacks optimal secure control identifying attack strategymaintaining
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
4
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Controllers Design for the Multi-Shuttle and Multi-Station Transportation System
5
作者 Tien Dong Ha Minh Tien Trinh +1 位作者 Tran Thanh Cong Vu Tuong Quan Vo 《Open Journal of Applied Sciences》 2021年第8期946-965,共20页
Nowadays, the Multi-Shuttle and Multi-Station Transportation System (MMTS)<span><span><span style="font-family:;" "=""> is one of the most interesting research topics in many... Nowadays, the Multi-Shuttle and Multi-Station Transportation System (MMTS)<span><span><span style="font-family:;" "=""> is one of the most interesting research topics in many fields of industries. It is an effective solution to reduce unexpected accidents that occur during transportation as well as increase productivity in manufacturing. The aim of this paper is to introduce the controller design for the MMTS which is built in our BK-Recme BioMech Lab at Ho Chi Minh City University of Technology (VNU-HCM), Viet Nam. Based on the design of this system, the control algorithms will be conducted to check the operation of the whole system. To evaluate the feasibility and effectiveness of this model, we design a series of random instances for different quantities of nodes as well as the different quantities of shuttles. Our system includes 4 stations and 6 shuttles which are assembled in the serial chain system. However, the number of stations and number of shuttles can be expanded to any desired ones which are based on the requirement of the industries. In this paper, we mainly focus on the controller design of this system to make it operate in an effective way that the goods will be transported and delivered to the target station as fast as possible. In order to solve the large</span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">scale instances and realistic transport prob<span>lems, we propose three algorithms for three progresses as shuttles calling</span>, path reading and shuttles communicating. The shuttles calling is to decide which <span>shuttle should be called to the star</span></span></span></span><span><span><span style="font-family:;" "="">t</span></span></span><span><span><span style="font-family:;" "="">-node. Path reading to determine the shortest</span></span></span><span><span><span style="font-family:;" "=""> <span>way to go from start-node to end-node. Finally, shuttles communicating,</span> which allow one shuttle to interact with the next shuttles so we have a loop of orders (shuttle 1 to shuttle 2;shuttle 2 to shuttle 3;etc</span></span></span><span><span><span style="font-family:;" "="">.</span></span></span><span><span><span style="font-family:;" "="">;shuttle n-1 to shuttle n). This proposes solution can help us to solve the huge numbers of shuttles <span>and stations in the system. The specific result of this study is applying</span> Dijkstra’s algorithm to propose an algorithm that allows handling a transportation system without caring about the number of shuttles as well as the number of stations for the closed-loop path. Several test problems are carried out in order to check the feasibility and the effectiveness of our purposed control algorithm.</span></span></span> 展开更多
关键词 multi-station Multi-Shuttle Transportation SHUTTLE CALLING RFID COMMUNICATING Start-Node End-Node
在线阅读 下载PDF
Conceptual design and preliminary feasibility study of fluid‑driven suspended control rods for molten salt reactors
6
作者 Jin‑Tong Cao Gui‑Feng Zhu +4 位作者 Chang‑Qing Yu Ya‑Fen Liu Yang Zou Rui Yan Hong‑Jie Xu 《Nuclear Science and Techniques》 2026年第1期225-243,共19页
Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for ... Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for online fuel reprocessing.However,the fuel-salt flow results in the decay of delayed neutron precursors(DNPs)outside the core,causing fluctuations in the effective delayed neutron fraction and consequently impacting the reactor reactivity.Particularly in accident scenarios—such as a combined pump shutdown and the inability to rapidly scram the reactor—the sole reliance on negative temperature feedback may cause a significant increase in core temperature,posing a threat to reactor safety.To address these problems,this paper introduces an innovative design for a passive fluid-driven suspended control rod(SCR)to dynamically compensate for reactivity fluctuations caused by DNPs flowing with the fuel.The control rod operates passively by leveraging the combined effects of gravity,buoyancy,and fluid dynamic forces,thereby eliminating the need for an external drive mechanism and enabling direct integration within the active region of the core.Using a 150 MWt thorium-based molten salt reactor as the reference design,we develop a mathematical model to systematically analyze the effects of key parameters—including the geometric dimensions and density of the SCR—on its performance.We examine its motion characteristics under different core flow conditions and assess its feasibility for the dynamic compensation of reactivity changes caused by fuel flow.The results of this study demonstrate that the SCR can effectively counteract reactivity fluctuations induced by fuel flow within molten salt reactors.A sensitivity analysis reveals that the SCR’s average density exerts a profound impact on its start-up flow threshold,channel flow rate,resistance to fuel density fluctuations,and response characteristics.This underscores the critical need to optimize this parameter.Moreover,by judiciously selecting the SCR’s length,number of deployed units,and the placement we can achieve the necessary reactivity control while maintaining a favorable balance between neutron economy and heat transfer performance.Ultimately,this paper provides an innovative solution for the passive reactivity control in molten salt reactors,offering significant potential for practical engineering applications. 展开更多
关键词 Molten salt reactor DNP flow-induced reactivity Passive control Suspended control rod
在线阅读 下载PDF
Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks
7
作者 Sk.A.Shezan 《Energy Engineering》 2026年第1期91-114,共24页
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia... Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments. 展开更多
关键词 Active power flow control interconnection flow controller(IFC) frequency response micro grid stability reactive power management
在线阅读 下载PDF
Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications
8
作者 K.Naga Venkata Siva Damodhar Reddy +3 位作者 P.Krishna Murthy Kiran Kumar Pulamolu M.Dharani T.Venkatakrishnamoorthy 《Energy Engineering》 2026年第1期221-242,共22页
Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressi... Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressing these shortcomings,thiswork presents a robust 15-level PackedUCell(PUC)inverter topology designed for renewable energy and grid-connected applications.The proposed systemintegrates a sensor less proportional-resonant(PR)controller with an advanced carrier-based pulse width modulation scheme.This approach efficiently balances capacitor voltage,minimizes steady-state error,and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation.Additionally,a novel switching algorithm simplifies the design and implementation,further lowering voltage stress across switches.Extensive simulation results validate the performance under various resistive and resistive-inductive load conditions,demonstrating compliance with IEEE-519 THD standards and robust operation under dynamic changes.The proposed sensorless PR-controlled 15-PUC inverter thus offers a compelling,cost-effective solution for efficient power conversion in next-generation renewable energy systems. 展开更多
关键词 PUC packed U cell MLI multilevel inverter SLC sensorless controller PR proportional resonant controller PD phase disposition THD total harmonic distortion
在线阅读 下载PDF
Distributed robust data-driven event-triggered control for QUAVs under stochastic disturbances
9
作者 Chao Song Hao Li +2 位作者 Bo Li Jiacun Wang Chunwei Tian 《Defence Technology(防务技术)》 2026年第1期155-171,共17页
To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance dat... To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system. 展开更多
关键词 DATA-DRIVEN QUAV control Fault diagnosis Event-triggered Non-conflicting communication
在线阅读 下载PDF
A Coordinated Multi-Loop Control Strategy for Fault Ride-Through in Grid-Forming Converters
10
作者 Zhuang Liu Mingwei Ren +1 位作者 Kai Shi Peifeng Xu 《Energy Engineering》 2026年第1期115-135,共21页
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)... Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability. 展开更多
关键词 Grid-forming converter multi-loop coordination negative-sequence control fault ride-through
在线阅读 下载PDF
Hydrochemical characteristics,evolution,and controlling factors of a karstic river with reservoirs:Insights from spatial-temporal analysis
11
作者 Jiang Wu Ting Wang +4 位作者 Tang Liu Jia-Ju Liu Nan Xu Hui Zeng Ling-Yan He 《Journal of Environmental Sciences》 2026年第1期108-119,共12页
Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-me... Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-ments in karst hydrology,significant gaps remain in long-term trends,underlying processes,and quantitative effects of environmental changes.This is especially true in areas like the Wujiang River(WJ)in China,where human activities such as reservoir construction and land use/cover changes have accelerated hydrochemical changes.We combined recent and historical monitoring data to provide a detailed analysis of the spatial and temporal characteristics,evolution,and controlling factors of major ions in WJ.These findings are important for local water management and contribute to global efforts to manage similar karst systems facing human-induced pressures.Our research shows clear seasonal differences in solute concentrations,with higher levels during the dry season.WJ’s water is rich in calcium,with Ca-HCO_(3) ion pairs being the most common.Reservoir monitor-ing stations show much higher levels of NO_(3)^(−)and SO_(4)^(2−)compared to river-type stations,likely due to longer hydraulic retention time and increased acid deposition.The study confirms the significant role of pH and water temperature in rock weathering processes.Land use/cover changes were identified as the primary drivers of solute variations(46.37%),followed by lithology(13.92%)and temperature(8.35%).Over the past two decades,in-tense carbonate weathering has been observed,especially during wet seasons.Among karstic provinces,Guizhou Province stands out with the highest ion concentrations,indicative of its extensive karst coverage and heightened weathering processes. 展开更多
关键词 Wujiang river Karst Reservoir Major ion controlling factor
原文传递
Coordinated Source-Network-Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System
12
作者 Mengxuan Shi Lintao Li +3 位作者 Dejun Shao Xiaojie Pan Xingyu Shi Yuxun Wang 《Energy Engineering》 2026年第1期493-510,共18页
In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)d... In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition. 展开更多
关键词 Wind and storage coordination modular multilevel converter inertia response coordinated control
在线阅读 下载PDF
Diverse methods and practical aspects in controlling single semiconductor qubits:a review
13
作者 Jia-Ao Peng Chu-Dan Qiu +1 位作者 Wen-Long Ma Jun-Wei Luo 《Journal of Semiconductors》 2026年第1期6-22,共17页
Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qub... Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit. 展开更多
关键词 quantum information with solid state qubits quantum control quantum dots quantum gate
在线阅读 下载PDF
Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning
14
作者 Jin Lin BinYu +3 位作者 Chao Chen Jiezhen Cai Yifan Wu Cunping Wang 《Energy Engineering》 2026年第1期181-203,共23页
With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided b... With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations. 展开更多
关键词 New power system grid-connected inverter virtual synchronous generator(VSG) virtual inertia damping coefficient adaptive control
在线阅读 下载PDF
Coordination Thermodynamic Control of Magnetic Domain Configuration Evolution toward Low‑Frequency Electromagnetic Attenuation
15
作者 Tong Huang Dan Wang +9 位作者 Xue He Zhaobo Feng Zhiqiang Xiong Yuqi Luo Yuhui Peng Guangsheng Luo Xuliang Nie Mingyue Yuan Chongbo Liu Renchao Che 《Nano-Micro Letters》 2026年第3期860-875,共16页
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at... The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials. 展开更多
关键词 Thermodynamically controlled coordination strategy Magnetic domain configuration Low-frequency electromagnetic wave absorption Electrical/magnetic coupling MULTIFUNCTION
在线阅读 下载PDF
Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy
16
作者 Yechun Xin Xinyuan Zhao +3 位作者 Dong Ding Shuyu Chen Chuanjie Wang Tuo Wang 《Energy Engineering》 2026年第1期460-474,共15页
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb... To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process. 展开更多
关键词 Hybrid HVDC transmission modular multilevel converter(MMC) controllable line commutated converter(CLCC) online power flow reversal full-bridge and half-bridge submodules new energy through dc transmission system
在线阅读 下载PDF
Nonlinear system PID-type multi-step predictive control 被引量:5
17
作者 YanZHANG ZengqiangCHEN ZhuzhiYUAN 《控制理论与应用(英文版)》 EI 2004年第2期201-204,共4页
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient alg... A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance. 展开更多
关键词 multi-step predictive control Neural networks PID control Nonlinear system
在线阅读 下载PDF
A voltage support control strategy based on three-port flexible multi-state switch in distribution networks 被引量:1
18
作者 Bo PENG Guorong ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期192-202,共11页
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM... Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies. 展开更多
关键词 FLEXIBLE multi-stATE SWITCH voltage support low-voltage ride-through reactive power control
在线阅读 下载PDF
Geometric Error Identification of Gantry-Type CNC Machine Tool Based on Multi-Station Synchronization Laser Tracers 被引量:4
19
作者 Jun Zha Huijie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期150-162,共13页
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer... Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector. 展开更多
关键词 Multi-point positioning multi-station synchronization CNC machine tool Geometric error Error separation
在线阅读 下载PDF
Stability of networked control systems with multi-step delay based on time-division algorithm 被引量:3
20
作者 Changlin MA Huajing FANG 《控制理论与应用(英文版)》 EI 2005年第4期404-408,共5页
A new control mode is proposed for a networked control system whose network-induced delay is longer than a sampling period. A time-division algorithm is presented to implement the control and for the mathematical mode... A new control mode is proposed for a networked control system whose network-induced delay is longer than a sampling period. A time-division algorithm is presented to implement the control and for the mathematical modeling of such networked control system. The infinite horizon controller is designed, which renders the networked control system mean square exponentially stable.Simulation results show the validity of the proposed theory. 展开更多
关键词 Networked control system Time-division-driven Time-division algorithm Infinite horizon control Mean square exponentially stable
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部