Electron–hole(e–h)recombination is a fundamental process that governs energy dissipation and device efficiency in semiconductors.In two-dimensional(2D)materials,the formation of tightly bound excitons makes exciton-...Electron–hole(e–h)recombination is a fundamental process that governs energy dissipation and device efficiency in semiconductors.In two-dimensional(2D)materials,the formation of tightly bound excitons makes exciton-mediated e–h recombination the dominant decay pathway.In this work,nonradiative e–h recombination within excitons in monolayer MoS2 is investigated using first-principles simulations that combine nonadiabatic molecular dynamics with𝐺𝑊and real-time Bethe–Salpeter equation(BSE)propagation.A two-step process is identified:rapid intervalley redistribution induced by exchange interaction,followed by slower phonon-assisted recombination facilitated by exciton binding.By selectively removing the screened Coulomb and exchange terms from the BSE Hamiltonian,their respective contributions are disentangled—exchange interaction is found to increase the number of accessible recombination pathways,while binding reduces the excitation energy and enhances nonradiative decay.A reduction in recombination lifetime by over an order of magnitude is observed due to the excitonic many-body effects.These findings provide microscopic insights for understanding and tuning exciton lifetimes in 2D transition-metal dichalcogenides.展开更多
Objective:Patients with homologous recombination deficiency(HRD)demonstrate distinct clinicopathological and prognostic features.However,standardised and clinically validated HRD detection methodologies specifically t...Objective:Patients with homologous recombination deficiency(HRD)demonstrate distinct clinicopathological and prognostic features.However,standardised and clinically validated HRD detection methodologies specifically tailored for non-small cell lung cancer(NSCLC)have yet to be established.Further research is needed to clarify the precise role and clinical implications of HRD in NSCLC.Methods:A cohort of 580 treatment-naive NSCLC patients was retrospectively enrolled.Comprehensive genomic profiling(CGP)was performed for all patients,and HRD status was evaluated using two genomic scar score(GSS)-based algorithms:a machine learning-based GSS(ML-GSS)and a continuous linear regression-based GSS(CLR-GSS).To assess the diagnostic performance(sensitivity and specificity)of the ML-GSS and CLR-GSS algorithms for HRD detection,immunohistochemical(IHC)staining was conducted for two HRD-related biomarkers:Schlafen 11(SLFN11)and RAD51.Survival analysis,including progression-free survival(PFS),along with multivariable Cox proportional hazards models,was performed to compare the prognostic value of the two HRD algorithms.Results:Among all patients,146(25.2%)and 46(7.9%)were classified as HRD-positive(HRD+)by ML-GSS and CLR-GSS,respectively.Using SLFN11 IHC expression as the reference standard,comparative analysis demonstrated that ML-GSS exhibited significantly higher sensitivity but lower specificity than CLR-GSS.This trend was consistently observed in RAD51 staining analysis.Compared to HRD-negative(HRD-)patients,MLGSS-defined HRD+cases displayed distinct clinicopathological and genomic features,including a higher prevalence of homologous recombination(HR)-related genes mutations,BRCA1/2 mutations,TP53 mutations,elevated tumor mutation burden(TMB),and increased copy number variations(CNVs).In contrast,CLR-GSSdefined HRD+patients were only enriched for BRCA1/2 mutations,TP53 mutations,and elevated TMB.Furthermore,ML-GSS-defined HRD+status was associated with significantly worse prognosis following first-line therapy compared to HRD-patients.Univariate and multivariable Cox analyses identified ML-GSS-defined HRD+and TP53 mutations as significant predictors and independent risk factors,respectively.No such associations were observed in the CLR-GSS-defined HRD+cohort.Conclusions:ML-GSS demonstrated superior performance to CLR-GSS in assessing chromosomal instability(CIN)and showed greater clinical utility.We recommend the ML-GSS algorithm as a robust and clinically validated tool for HRD/CIN evaluation in NSCLC.Furthermore,ML-GSS-defined HRD+status was identified as both a significant predictor and an independent risk factor.展开更多
In this study, RT-PCR was performed on lung tissue samples from sick pigs in a suspected outbreak of porcine reproductive and respiratory syndrome (PRRS) at a pig farm in Mianyang City, Sichuan Province, China. Positi...In this study, RT-PCR was performed on lung tissue samples from sick pigs in a suspected outbreak of porcine reproductive and respiratory syndrome (PRRS) at a pig farm in Mianyang City, Sichuan Province, China. Positive samples were inoculated into Marc-145 cells to observe lesions. The Marc-145 cells with cytopathic lesions were identified by indirect immunofluorescence. The whole genome sequences of the isolated and purified strains were amplified by RT-PCR and analyzed for homology and genetic evolution. A strain of porcine reproductive and respiratory syndrome virus (PRRSV), named SCMY2023 (GenBank No. PQ179742), was successfully isolated. SCMY2023 has a genome length of 15,321 base pairs (without a poly A tail). Nucleotide and amino acid homology analyses suggest that this strain belongs to Lineage 8, a variant of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) prevalent in China. Recombination and genetic evolution analyses indicate that this isolate is a PRRSV variant that recombined with HuN-ZZ (Lineage 8, 98.79% homology) on the backbone of the SCSN2020 strain (Lineage 8, 99.35% homology) in the recombination region from 4407 to 13,107 nucleotides (ORF1a to ORF3). In-depth study of the genetic recombination of this isolate can provide a reference for the prevention and control of PRRS.展开更多
Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(...Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.展开更多
BACKGROUND Patients with colorectal cancer(CRC)exhibiting microsatellite instability(MSI)-high generally demonstrate a favorable response to immunotherapy.In contrast,the efficacy of immunotherapy in microsatellite-st...BACKGROUND Patients with colorectal cancer(CRC)exhibiting microsatellite instability(MSI)-high generally demonstrate a favorable response to immunotherapy.In contrast,the efficacy of immunotherapy in microsatellite-stable(MSS)CRC patients is considerably restricted.This study sought to evaluate the effectiveness of immu-notherapy in MSS patients characterized by homologous recombination defi-ciency(HRD)as opposed to those with homologous recombination proficiency(HRP).AIM To investigate and compare the clinicopathological characteristics,treatment modalities,and outcomes between the HRD and HRP groups in CRC.METHODS Next-generation sequencing was performed on 268 CRC patients to identify tumor-associated genetic alterations and assess their HRD scores and MSI status.Patients with HRD-related gene alterations or an HRD score≥30 were classified into the HRD group,while the remaining patients were assigned to the HRP group.Clinical data,including staging and treatment regimens,were collected for analysis.Cox regression and Kaplan-Meier survival curves were employed to evaluate whether the HRD group demonstrated improved survival outcomes following immunotherapy treatment.RESULTS Among the 268 patients,64 were classified into the HRD group,which had a higher proportion of early-stage CRC diagnoses compared to the HRP group.Kaplan-Meier survival curves indicated significantly better survival rates in the HRD group compared to the HRP group across all cohorts,as well as among MSS patients treated with immunotherapy(P<0.05).CONCLUSION This study demonstrates that CRC patients with HRD have a more favorable prognosis and suggests that HRD status could serve as a predictive marker for immunotherapy response in MSS patients.展开更多
Metal halide perovskites have rapidly emerged as outstanding semiconductors for laser applications.Surface plasmon resonances of metals offer a platform for improving the perovskite lasing properties of metal halide p...Metal halide perovskites have rapidly emerged as outstanding semiconductors for laser applications.Surface plasmon resonances of metals offer a platform for improving the perovskite lasing properties of metal halide perovskites by accelerating radiative recombination.However,the constraint on degrees of freedom of perovskite-metal interactions in two dimensions keeps us from getting a full picture of plasmon-involved carrier dynamics and reaching the optimum perovskite lasing performance.Here we report a strategy of synthesizing quantitative coassemblies of perovskite and metal nanocrystals for studying the effect of surface plasmons on carrier dynamics in depth and exploring plasmon-enhanced perovskite lasing performance.Within the coassembly,each metal nanocrystal supports localized surface plasmon resonances capable of accelerating radiative recombination of all adjacent perovskite nanocrystals in three dimensions.The quantitative coassemblies disclose the evolution of radiative and nonradiative recombination processes in perovskite nanocrystals with the plasmon modes,identifying an optimal metal nanocrystal content for fulfilling the highest radiative efficiency in perovskite nanocrystals.By virtue of accelerated radiative recombination,the coassemblies of perovskite and metal nanocrystals allowed for the construction of microlaser arrays with enhanced performance including low thresholds and ultrafast outputs.This work fundamentally advances the perovskite-metal systems for plasmonically enhancing perovskite optoelectronic performance.展开更多
Genome rearrangement is an important process that leads to genetic diversity,including mutation-related insertions,deletions,or inversions in the genome[1,2].
The published article titled“Truncated Bid Overexpression Induced by Recombinant Adenovirus Cre/LoxP System Suppresses the Tumorigenic Potential of CD133+Ovarian Cancer Stem Cells”has been retracted from Oncology Re...The published article titled“Truncated Bid Overexpression Induced by Recombinant Adenovirus Cre/LoxP System Suppresses the Tumorigenic Potential of CD133+Ovarian Cancer Stem Cells”has been retracted from Oncology Research,Vol.25,No.4,2017,pp.595–603.展开更多
Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminog...Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.展开更多
Many eukaryotic genes are members of multi-gene families due to gene duplications, which generate new copies that allow functional divergence. However, the relationship between
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of ge...In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd^2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.展开更多
The multi-factor recombination and processes superimposition model for hydrocarbon accumulation is put forward in view of the hydrocarbon geological characteristics of multiple episodes of structural evolution, multip...The multi-factor recombination and processes superimposition model for hydrocarbon accumulation is put forward in view of the hydrocarbon geological characteristics of multiple episodes of structural evolution, multiple sets of source-reservoir-seal assemblage, multiple cycles of hydrocarbon accumulation and multiple episodes of readjustment and reconstruction in the complex superimposed basins in China. It is a system including theories and methods that can help to predict favorable exploration regions. According to this model, the basic discipline for hydrocarbon generation, evolution and distribution in the superimposed basins can be summarized in multi-factor recombination, processes superimposition, multiple stages of oil filling and latest stage preservation. With the Silurian of the Tarim basin as an example, based on the reconstruction of the evolution history of the four factors (paleo-anticline, source rock, regional cap rock and kinematic equilibrium belt) controlling hydrocarbon accumulation, this model was adopted to predict favorable hydrocarbon accumulation areas and favorable exploration regions following structural destruction in three stages of oil filling, to provide guidance for further exploration ofoil and gas in the Silurian of the Tarim basin.展开更多
Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain larg...Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine.展开更多
Ovarian carcinoma is the most lethal gynecologic malignancy. Resistance to platinum is considered the major problem afecting prognosis. Our recent study established that micro RNA-506(mi R-506) expression was closely ...Ovarian carcinoma is the most lethal gynecologic malignancy. Resistance to platinum is considered the major problem afecting prognosis. Our recent study established that micro RNA-506(mi R-506) expression was closely associated with progression-free survival and overall survival in two independent patient cohorts totaling 598 epithelial ovarian cancer cases. Further functional study demonstrated that mi R-506 could augment the response to cisplatin and olaparib through targeting RAD51 and suppressing homologous recombination in a panel of ovarian cancer cell lines. Systemic delivery of mi R-506 in an orthotopic ovarian cancer mouse model signiicantly augmented the cisplatin response, thus recapitulating the clinical observation. Therefore, mi R-506 plays a functionally important role in homologous recombination and has important therapeutic value for sensitizing cancer cells to chemotherapy, especially in chemo-resistant patients with attenuated expression of mi R-506.展开更多
The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoc...The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoculated with Potato virus X, Potato virus Y, TMV and CMV isolate RB (CMV-RB), respectively. Symptom observation showed there were no symptom differences in transgenic tobacco plants as compared with those in non-transgenie tobacco plants. ELISA also illustrated that the virus concentrations in the transgenic plants were similar to those in non-transgenic plants, indicating that no synergism is found in these plants. The transgenic tobacco plants expressing movement protein gene of ToMV or partial replicase gene of CMV-P1 were inoculated with TMV and CMV-RB, respectively. The local or systemic infected leaves were then used for elucidation of the possible virus recombination in transgenic plants with biological infectivity test, ELISA and immuno-capture RT-PCR. Within 16 months, no recombination was found between transformed genes and inoculated virus genomes. The research provides fundamental data for understanding of the possible risk of the transgenic plants expressing viral sequences.展开更多
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them....Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.展开更多
A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H ...A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n-i-p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 Ω-cm^2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage Voc = 1.4 V, which is nearly the sum of the Vocs of the two corresponding single cells, indicating no Voc losses at the tunnel recombination junction.展开更多
The KLL dielectronic recombination (DR) processes of ions from highly charged helium-like to oxygen-like krypton, iodine and barium ions are studied systematically in the relativistic distorted-wave approximation wi...The KLL dielectronic recombination (DR) processes of ions from highly charged helium-like to oxygen-like krypton, iodine and barium ions are studied systematically in the relativistic distorted-wave approximation with configuration interaction. The KLL DR resonant energies, the corresponding resonant strengths and the theoretical spectra for each highly charged ion species are obtained. The results accord well with other available values. The behaviour of KLL resonant strengths for He-like ions with atomic number Z is analysed.展开更多
INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat ...INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat shock protein and vacuolating cytotoxin and so on ,and urease is an important factor in the colinization of the gastric mucosa and suspected to cause damage to the gastric mucosa[10-14].At the same time ,urdase is also one of the important protective antigens .展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos.2024YFA1409800 for J.Z.and2024YFA1408603 for Q.Z.)the National Natural Science Foundation of China (Grant Nos.12125408,12334004for J.Z.,and 12174363 for Q.Z.)+1 种基金the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0303306 for J.Z.)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101 for J.Z.)。
文摘Electron–hole(e–h)recombination is a fundamental process that governs energy dissipation and device efficiency in semiconductors.In two-dimensional(2D)materials,the formation of tightly bound excitons makes exciton-mediated e–h recombination the dominant decay pathway.In this work,nonradiative e–h recombination within excitons in monolayer MoS2 is investigated using first-principles simulations that combine nonadiabatic molecular dynamics with𝐺𝑊and real-time Bethe–Salpeter equation(BSE)propagation.A two-step process is identified:rapid intervalley redistribution induced by exchange interaction,followed by slower phonon-assisted recombination facilitated by exciton binding.By selectively removing the screened Coulomb and exchange terms from the BSE Hamiltonian,their respective contributions are disentangled—exchange interaction is found to increase the number of accessible recombination pathways,while binding reduces the excitation energy and enhances nonradiative decay.A reduction in recombination lifetime by over an order of magnitude is observed due to the excitonic many-body effects.These findings provide microscopic insights for understanding and tuning exciton lifetimes in 2D transition-metal dichalcogenides.
基金supported by the National High Level Hospital Clinical Research Funding(No.BJ-2019-195)the National High Level Hospital Clinical Research Funding(No.BJ-2023-090)。
文摘Objective:Patients with homologous recombination deficiency(HRD)demonstrate distinct clinicopathological and prognostic features.However,standardised and clinically validated HRD detection methodologies specifically tailored for non-small cell lung cancer(NSCLC)have yet to be established.Further research is needed to clarify the precise role and clinical implications of HRD in NSCLC.Methods:A cohort of 580 treatment-naive NSCLC patients was retrospectively enrolled.Comprehensive genomic profiling(CGP)was performed for all patients,and HRD status was evaluated using two genomic scar score(GSS)-based algorithms:a machine learning-based GSS(ML-GSS)and a continuous linear regression-based GSS(CLR-GSS).To assess the diagnostic performance(sensitivity and specificity)of the ML-GSS and CLR-GSS algorithms for HRD detection,immunohistochemical(IHC)staining was conducted for two HRD-related biomarkers:Schlafen 11(SLFN11)and RAD51.Survival analysis,including progression-free survival(PFS),along with multivariable Cox proportional hazards models,was performed to compare the prognostic value of the two HRD algorithms.Results:Among all patients,146(25.2%)and 46(7.9%)were classified as HRD-positive(HRD+)by ML-GSS and CLR-GSS,respectively.Using SLFN11 IHC expression as the reference standard,comparative analysis demonstrated that ML-GSS exhibited significantly higher sensitivity but lower specificity than CLR-GSS.This trend was consistently observed in RAD51 staining analysis.Compared to HRD-negative(HRD-)patients,MLGSS-defined HRD+cases displayed distinct clinicopathological and genomic features,including a higher prevalence of homologous recombination(HR)-related genes mutations,BRCA1/2 mutations,TP53 mutations,elevated tumor mutation burden(TMB),and increased copy number variations(CNVs).In contrast,CLR-GSSdefined HRD+patients were only enriched for BRCA1/2 mutations,TP53 mutations,and elevated TMB.Furthermore,ML-GSS-defined HRD+status was associated with significantly worse prognosis following first-line therapy compared to HRD-patients.Univariate and multivariable Cox analyses identified ML-GSS-defined HRD+and TP53 mutations as significant predictors and independent risk factors,respectively.No such associations were observed in the CLR-GSS-defined HRD+cohort.Conclusions:ML-GSS demonstrated superior performance to CLR-GSS in assessing chromosomal instability(CIN)and showed greater clinical utility.We recommend the ML-GSS algorithm as a robust and clinically validated tool for HRD/CIN evaluation in NSCLC.Furthermore,ML-GSS-defined HRD+status was identified as both a significant predictor and an independent risk factor.
文摘In this study, RT-PCR was performed on lung tissue samples from sick pigs in a suspected outbreak of porcine reproductive and respiratory syndrome (PRRS) at a pig farm in Mianyang City, Sichuan Province, China. Positive samples were inoculated into Marc-145 cells to observe lesions. The Marc-145 cells with cytopathic lesions were identified by indirect immunofluorescence. The whole genome sequences of the isolated and purified strains were amplified by RT-PCR and analyzed for homology and genetic evolution. A strain of porcine reproductive and respiratory syndrome virus (PRRSV), named SCMY2023 (GenBank No. PQ179742), was successfully isolated. SCMY2023 has a genome length of 15,321 base pairs (without a poly A tail). Nucleotide and amino acid homology analyses suggest that this strain belongs to Lineage 8, a variant of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) prevalent in China. Recombination and genetic evolution analyses indicate that this isolate is a PRRSV variant that recombined with HuN-ZZ (Lineage 8, 98.79% homology) on the backbone of the SCSN2020 strain (Lineage 8, 99.35% homology) in the recombination region from 4407 to 13,107 nucleotides (ORF1a to ORF3). In-depth study of the genetic recombination of this isolate can provide a reference for the prevention and control of PRRS.
基金supported by grants from the National Natural Science Foundation of China(32170238,32400191)Guangdong Basic and Applied Basic Research Foundation(2023A1515111029)+2 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(RCYX20200714114538196)the Chinese Academy of Agricultural Sciences Elite Youth Program(grant 110243160001007)the Guangdong Pearl River Talent Program(2021QN02N792)。
文摘Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
基金Supported by Natural Science Foundation of Guangdong Province,No.2021A1515011146 and No.2023A1515010785Key Areas Research and Development Programs of Guangdong Province,No.2023B1111050009.
文摘BACKGROUND Patients with colorectal cancer(CRC)exhibiting microsatellite instability(MSI)-high generally demonstrate a favorable response to immunotherapy.In contrast,the efficacy of immunotherapy in microsatellite-stable(MSS)CRC patients is considerably restricted.This study sought to evaluate the effectiveness of immu-notherapy in MSS patients characterized by homologous recombination defi-ciency(HRD)as opposed to those with homologous recombination proficiency(HRP).AIM To investigate and compare the clinicopathological characteristics,treatment modalities,and outcomes between the HRD and HRP groups in CRC.METHODS Next-generation sequencing was performed on 268 CRC patients to identify tumor-associated genetic alterations and assess their HRD scores and MSI status.Patients with HRD-related gene alterations or an HRD score≥30 were classified into the HRD group,while the remaining patients were assigned to the HRP group.Clinical data,including staging and treatment regimens,were collected for analysis.Cox regression and Kaplan-Meier survival curves were employed to evaluate whether the HRD group demonstrated improved survival outcomes following immunotherapy treatment.RESULTS Among the 268 patients,64 were classified into the HRD group,which had a higher proportion of early-stage CRC diagnoses compared to the HRP group.Kaplan-Meier survival curves indicated significantly better survival rates in the HRD group compared to the HRP group across all cohorts,as well as among MSS patients treated with immunotherapy(P<0.05).CONCLUSION This study demonstrates that CRC patients with HRD have a more favorable prognosis and suggests that HRD status could serve as a predictive marker for immunotherapy response in MSS patients.
基金supported by the National Natural Science Foundation of China(Nos.52272186,22090023 and 22375207)Beijing Institute of Technology Research Fund Program for Young Scholars(No.XSQD-6120220081)
文摘Metal halide perovskites have rapidly emerged as outstanding semiconductors for laser applications.Surface plasmon resonances of metals offer a platform for improving the perovskite lasing properties of metal halide perovskites by accelerating radiative recombination.However,the constraint on degrees of freedom of perovskite-metal interactions in two dimensions keeps us from getting a full picture of plasmon-involved carrier dynamics and reaching the optimum perovskite lasing performance.Here we report a strategy of synthesizing quantitative coassemblies of perovskite and metal nanocrystals for studying the effect of surface plasmons on carrier dynamics in depth and exploring plasmon-enhanced perovskite lasing performance.Within the coassembly,each metal nanocrystal supports localized surface plasmon resonances capable of accelerating radiative recombination of all adjacent perovskite nanocrystals in three dimensions.The quantitative coassemblies disclose the evolution of radiative and nonradiative recombination processes in perovskite nanocrystals with the plasmon modes,identifying an optimal metal nanocrystal content for fulfilling the highest radiative efficiency in perovskite nanocrystals.By virtue of accelerated radiative recombination,the coassemblies of perovskite and metal nanocrystals allowed for the construction of microlaser arrays with enhanced performance including low thresholds and ultrafast outputs.This work fundamentally advances the perovskite-metal systems for plasmonically enhancing perovskite optoelectronic performance.
基金supported by grants(92168103,32171417,2019CXJQ01)from the National Nature Science Foundation of China,Shanghai Municipal GovernmentPeak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai.
文摘Genome rearrangement is an important process that leads to genetic diversity,including mutation-related insertions,deletions,or inversions in the genome[1,2].
文摘The published article titled“Truncated Bid Overexpression Induced by Recombinant Adenovirus Cre/LoxP System Suppresses the Tumorigenic Potential of CD133+Ovarian Cancer Stem Cells”has been retracted from Oncology Research,Vol.25,No.4,2017,pp.595–603.
基金supported by the National Natural Science Foundation of China,Nos.92148206,82071330(both to ZT)a grant from the Major Program of Hubei Province,No.2023BAA005(to ZT)+1 种基金a grant from the Key Research and Discovery Program of Hubei Province,No.2021BCA109(to ZT)the Research Foundation of Tongji Hospital,No.2022B37(to PZ)。
文摘Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage.However,during minimally invasive surgery,recombinant tissue plasminogen activator may come into contact with brain tissue.Therefore,a thorough assessment of its safety is required.In this study,we established a mouse model of intracerebral hemorrhage induced by type VII collagenase.We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage,reduced pathological damage,and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma.In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin,the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis,autophagy,and endoplasmic reticulum stress.Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons.Moreover,the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis,autophagy,and endoplasmic reticulum stress.Furthermore,to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects,various inhibitors were used to target distinct domains.It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonineprotein kinase/mammalian target of rapamycin pathway.These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage,possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.
文摘Many eukaryotic genes are members of multi-gene families due to gene duplications, which generate new copies that allow functional divergence. However, the relationship between
基金supported by funds from Fudan Universityfunds from Rijk Zwaan,the Netherlands,and the Biology Department and the Huck Institutes of the Life Sciences at the Pennsylvania State University in USA
文摘In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd^2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.
文摘The multi-factor recombination and processes superimposition model for hydrocarbon accumulation is put forward in view of the hydrocarbon geological characteristics of multiple episodes of structural evolution, multiple sets of source-reservoir-seal assemblage, multiple cycles of hydrocarbon accumulation and multiple episodes of readjustment and reconstruction in the complex superimposed basins in China. It is a system including theories and methods that can help to predict favorable exploration regions. According to this model, the basic discipline for hydrocarbon generation, evolution and distribution in the superimposed basins can be summarized in multi-factor recombination, processes superimposition, multiple stages of oil filling and latest stage preservation. With the Silurian of the Tarim basin as an example, based on the reconstruction of the evolution history of the four factors (paleo-anticline, source rock, regional cap rock and kinematic equilibrium belt) controlling hydrocarbon accumulation, this model was adopted to predict favorable hydrocarbon accumulation areas and favorable exploration regions following structural destruction in three stages of oil filling, to provide guidance for further exploration ofoil and gas in the Silurian of the Tarim basin.
文摘Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine.
基金supported by the National Institutes of Health of the United States (U24CA143835)the Blanton-Davis Ovarian Cancer Research Program+2 种基金the Asian Foundation for Cancer Research to W.Zsupported by grants from the National Natural Science Foundation of China (#81101673, #81472761 to G.L.)Tianjin Science and Technology Committee Foundation (14JCYBJC25300 to G.L. and 14RCGFSY00148 to F.X.)
文摘Ovarian carcinoma is the most lethal gynecologic malignancy. Resistance to platinum is considered the major problem afecting prognosis. Our recent study established that micro RNA-506(mi R-506) expression was closely associated with progression-free survival and overall survival in two independent patient cohorts totaling 598 epithelial ovarian cancer cases. Further functional study demonstrated that mi R-506 could augment the response to cisplatin and olaparib through targeting RAD51 and suppressing homologous recombination in a panel of ovarian cancer cell lines. Systemic delivery of mi R-506 in an orthotopic ovarian cancer mouse model signiicantly augmented the cisplatin response, thus recapitulating the clinical observation. Therefore, mi R-506 plays a functionally important role in homologous recombination and has important therapeutic value for sensitizing cancer cells to chemotherapy, especially in chemo-resistant patients with attenuated expression of mi R-506.
基金supported by the National Natural Science Foundation of China(39870499)funded by the Nationa1 Outstanding Youth Foundations from National Natural Science Foundation of China(30125032).
文摘The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoculated with Potato virus X, Potato virus Y, TMV and CMV isolate RB (CMV-RB), respectively. Symptom observation showed there were no symptom differences in transgenic tobacco plants as compared with those in non-transgenie tobacco plants. ELISA also illustrated that the virus concentrations in the transgenic plants were similar to those in non-transgenic plants, indicating that no synergism is found in these plants. The transgenic tobacco plants expressing movement protein gene of ToMV or partial replicase gene of CMV-P1 were inoculated with TMV and CMV-RB, respectively. The local or systemic infected leaves were then used for elucidation of the possible virus recombination in transgenic plants with biological infectivity test, ELISA and immuno-capture RT-PCR. Within 16 months, no recombination was found between transformed genes and inoculated virus genomes. The research provides fundamental data for understanding of the possible risk of the transgenic plants expressing viral sequences.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203094 and 61305042)the Natural Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+3 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB202604)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. 1KGCX2-YW-383-1)the National High Technology Research and Development Program of China (Grant No. SQ2010AA0521758001)
文摘A new tunnel recombination junction is fabricated for n-i-p type micromorph tandem solar cells. We insert a thin heavily doped hydrogenated amorphous silicon (a-Si:H) p^+ recombination layer between the n a-Si:H and the p hydrogenated nanocrystalline silicon (nc-Si:H) layers to improve the performance of the n-i-p tandem solar cells. The effects of the boron doping gas ratio and the deposition time of the p-a-Si:H recombination layer on the tunnel recombination junctions have been investigated. The current-voltage characteristic of the tunnel recombination junction shows a nearly ohmic characteristic, and the resistance of the tunnel recombination junction can be as low as 1.5 Ω-cm^2 by using the optimized p-a-Si:H recombination layer. We obtain tandem solar cells with open circuit voltage Voc = 1.4 V, which is nearly the sum of the Vocs of the two corresponding single cells, indicating no Voc losses at the tunnel recombination junction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10676025 and 10976019)
文摘The KLL dielectronic recombination (DR) processes of ions from highly charged helium-like to oxygen-like krypton, iodine and barium ions are studied systematically in the relativistic distorted-wave approximation with configuration interaction. The KLL DR resonant energies, the corresponding resonant strengths and the theoretical spectra for each highly charged ion species are obtained. The results accord well with other available values. The behaviour of KLL resonant strengths for He-like ions with atomic number Z is analysed.
基金Supported by the National Major Science and Technology Projects,No.96-901-01-54.
文摘INTRODUCTIONHelicobacter pylori (H . pylori) is associated with the development of chronic gastritis ,peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9],H .pylori has many antigens ,including urease ,heat shock protein and vacuolating cytotoxin and so on ,and urease is an important factor in the colinization of the gastric mucosa and suspected to cause damage to the gastric mucosa[10-14].At the same time ,urdase is also one of the important protective antigens .