Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform...Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
To investigate the metal flow during the railway wheel forming process, experiments and finite element method (FEM) simulation were carried out. An axisymmetric modeling for the wheel rolling process was proposed to...To investigate the metal flow during the railway wheel forming process, experiments and finite element method (FEM) simulation were carried out. An axisymmetric modeling for the wheel rolling process was proposed to predict the metal flow in radial direction, by which the whole multi-stage forming process could be simulated in axisymmetric and integral way. The result shows that the axisymmetric simulation method was an effective method to explore the metal flow in radial direction and to analyze the relationships of tools motion during the wheel rolling. The detail information about metal flow in railway wheel forming process was obtained. The metal in the wheel web was from the area near the half radius of the original billet; the chill zone of the billet became an envelope of the rim and part of the web with a maximum thickness of about 6 mm below the tread. At the wheel rolling stage, the metal in the rim flowed towards the web; the metal near the surfaces of the conjunction region between the web and rim suffered severe shear deformation.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
The novel method for the preparation of titanium powder by multi-stage reduction was proposed. The primary reduction adopted self-propagating high-temperature synthesis(SHS) mode. This paper focuses on the primary red...The novel method for the preparation of titanium powder by multi-stage reduction was proposed. The primary reduction adopted self-propagating high-temperature synthesis(SHS) mode. This paper focuses on the primary reduction process of Mg–TiO_(2) system under the condition of off-balance reaction. The effects of different material ratios,material arrangement methods and reaction initiation modes on the SHS reaction process of Mg–TiO_(2) system and its reaction mechanism were systematically studied. SHS mode was used to Mg–TiO_(2) system, and non-stoichiometric lowvalent titanium oxide intermediate including a-Ti(Ti2 O type) and Ti O was directly obtained(with oxygen content of13.93 wt%). SHS reaction initiated by local ignition is more sufficient than by overall heating method. Compared with the loose setting materials, the compacts can increase the effective contact interface of the reactants, and SHS reaction proceeds more sufficiently, which is favorable for obtaining lower oxygen content product. The adiabatic temperatures of the Mg–TiO_(2) system at different initial conditions were calculated according to the improved calculation method.When the initial temperature is 298 K, the adiabatic temperature of Mg–TiO_(2) system is between 1363 and 2067 K at different material ratios. Therefore, unreacted or partially excess Mg at the reaction front will diffuse into the unreacted region in gas or liquid form, thereby preheating the material and initiating further SHS reaction.展开更多
In this paper, an aeronautical thin-walled part with a complex geometry which has several sharp bends and curvatures in different directions was investigated. This kind of part is difficult to be manufactured only in ...In this paper, an aeronautical thin-walled part with a complex geometry which has several sharp bends and curvatures in different directions was investigated. This kind of part is difficult to be manufactured only in one stage. Therefore, an innovative multi-stage active hydroforming process assisted by the rigid forming method was designed. In addition, an optimized blank geometry is obtained. In fact, the main focused point of this paper is to propose a new small radius rounded corner forming technique and analyze the mechanism. Two kinds of forming modes of changing a big rounded corner into a small one, which are related to different tangential positions of the die in the process of calibration, are analyzed theoretically. Meanwhile, the stress and strain states of the deformation region are compared. The relationships between the minimum relative radii of rounded corners I and II in the first stage and the hydraulic pressure are calculated by the bending theory. Finally, the influences of the tensile-bulging effect and the interface condition of the double-layer sheet on the forming quality of the specimen are investigated. The achieved results can make a foundation for utilizing the proposed method in forming of thin-walled parts with very small radii.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(>4 km)rock sequence,with a genera...The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(>4 km)rock sequence,with a generalized展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties...Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.展开更多
Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the a...Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot co...The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).展开更多
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However...Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.展开更多
Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids...Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1205602,and 2023YFC3707801)the National Natural Science Foundation of China(Nos.U22A20402,22376073,21936003 and 22306119)China Postdoctoral Science Foundation(No.2023T160419).
文摘Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金Sponsored by National High-tech Research and Development Program(863 Program)of China(2008AA030703)
文摘To investigate the metal flow during the railway wheel forming process, experiments and finite element method (FEM) simulation were carried out. An axisymmetric modeling for the wheel rolling process was proposed to predict the metal flow in radial direction, by which the whole multi-stage forming process could be simulated in axisymmetric and integral way. The result shows that the axisymmetric simulation method was an effective method to explore the metal flow in radial direction and to analyze the relationships of tools motion during the wheel rolling. The detail information about metal flow in railway wheel forming process was obtained. The metal in the wheel web was from the area near the half radius of the original billet; the chill zone of the billet became an envelope of the rim and part of the web with a maximum thickness of about 6 mm below the tread. At the wheel rolling stage, the metal in the rim flowed towards the web; the metal near the surfaces of the conjunction region between the web and rim suffered severe shear deformation.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金financially supported by the National Natural Science Foundation of China(Nos.U1908225,U1702253 and 51774078)the Fundamental Research Funds for the Central Universities(Nos.N172506009,N170908001 and N182515007)。
文摘The novel method for the preparation of titanium powder by multi-stage reduction was proposed. The primary reduction adopted self-propagating high-temperature synthesis(SHS) mode. This paper focuses on the primary reduction process of Mg–TiO_(2) system under the condition of off-balance reaction. The effects of different material ratios,material arrangement methods and reaction initiation modes on the SHS reaction process of Mg–TiO_(2) system and its reaction mechanism were systematically studied. SHS mode was used to Mg–TiO_(2) system, and non-stoichiometric lowvalent titanium oxide intermediate including a-Ti(Ti2 O type) and Ti O was directly obtained(with oxygen content of13.93 wt%). SHS reaction initiated by local ignition is more sufficient than by overall heating method. Compared with the loose setting materials, the compacts can increase the effective contact interface of the reactants, and SHS reaction proceeds more sufficiently, which is favorable for obtaining lower oxygen content product. The adiabatic temperatures of the Mg–TiO_(2) system at different initial conditions were calculated according to the improved calculation method.When the initial temperature is 298 K, the adiabatic temperature of Mg–TiO_(2) system is between 1363 and 2067 K at different material ratios. Therefore, unreacted or partially excess Mg at the reaction front will diffuse into the unreacted region in gas or liquid form, thereby preheating the material and initiating further SHS reaction.
基金supported by the National Science and Technology Major Project of China (No. 2014ZX04002041)
文摘In this paper, an aeronautical thin-walled part with a complex geometry which has several sharp bends and curvatures in different directions was investigated. This kind of part is difficult to be manufactured only in one stage. Therefore, an innovative multi-stage active hydroforming process assisted by the rigid forming method was designed. In addition, an optimized blank geometry is obtained. In fact, the main focused point of this paper is to propose a new small radius rounded corner forming technique and analyze the mechanism. Two kinds of forming modes of changing a big rounded corner into a small one, which are related to different tangential positions of the die in the process of calibration, are analyzed theoretically. Meanwhile, the stress and strain states of the deformation region are compared. The relationships between the minimum relative radii of rounded corners I and II in the first stage and the hydraulic pressure are calculated by the bending theory. Finally, the influences of the tensile-bulging effect and the interface condition of the double-layer sheet on the forming quality of the specimen are investigated. The achieved results can make a foundation for utilizing the proposed method in forming of thin-walled parts with very small radii.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金funded by grants from Sinoprobe-05-02 from the Ministry of Science and Technology of Chinathe NSF China (Nos. 40930313, 40921001, 41202036)+1 种基金the China Geological Survey (Nos. 1212011121263, 12120114061801, 2014DFR2127C)project from Institute of Geology, Chinese Academy of Geological Sciences (J1526)
文摘The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(>4 km)rock sequence,with a generalized
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
基金supported by the National Natural Science Foundation of China(No.51805265)the Fundamental Research Funds for the Central Universities,China(No.30922010921).
文摘Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.
文摘Agricultural Products Processing and Storage (ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature) is an international,pect-review ed open access journal with the aim to offer a platform for the rapid dissemination of significant,novel,and high-impact research in the fields of agricultural product processing science,technology,engineering,and nutrition.Additio nally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
文摘The hot deformation characteristics of induction quenched Zr-Sn-Nb-Fe-Cr alloy forged rod in the temperature range of 600–900°C and strain rate range of 0.001–1 s^(-1)were studied by Gleeble3800 uniaxial hot compression experiment.The results show that the flow stress decreases with the decrease in strain rate and the increase in deformation temperature in the true stress-true strain curve of Zr-Sn-Nb-Fe-Cr alloy forged rod.Moreover,the hot deformation characteristics of the material can be described by the hyperbolic sine constitutive equation.Under the experimental conditions,the average thermal activation energy(Q)of the alloy was 412.9105 kJ/mol.The microstructure analysis of the processing map and the sample after hot compression shows that the optimum hot working parameters of the alloy are 795–900°C,0.001–0.0068 s^(-1),at the deformation temperature of 600–900°C,and the strain rate of 0.001–1 s^(-1).
基金supported by the King Abdullah University of Science and Technology(KAUST)。
文摘Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.
基金financially supported by the Heilongjiang Provincial Key R&D Program Project(No.GA21A204)Heilongjiang Provincial Natural Science Foundation of China(No.LH2022D031)the Research Project of Heilongjiang Province Bureau of Geology and Mineral Resources(No.HKY202302).
文摘Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.