Because of an explosive growth of the intrusions, necessity of anomaly-based Intrusion Detection Systems (IDSs) which are capable of detecting novel attacks, is increasing. Among those systems, flow-based detection sy...Because of an explosive growth of the intrusions, necessity of anomaly-based Intrusion Detection Systems (IDSs) which are capable of detecting novel attacks, is increasing. Among those systems, flow-based detection systems which use a series of packets exchanged between two terminals as a unit of observation, have an advantage of being able to detect anomaly which is included in only some specific sessions. However, in large-scale networks where a large number of communications takes place, analyzing every flow is not practical. On the other hand, a timeslot-based detection systems need not to prepare a number of buffers although it is difficult to specify anomaly communications. In this paper, we propose a multi-stage anomaly detection system which is combination of timeslot-based and flow-based detectors. The proposed system can reduce the number of flows which need to be subjected to flow-based analysis but yet exhibits high detection accuracy. Through experiments using data set, we present the effectiveness of the proposed method.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However...Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids...Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.展开更多
This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of ...This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.展开更多
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho...A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising te...UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.展开更多
Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution.Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen ident...Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution.Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes,yielding ages of∼426,∼376-373 and∼269-254 Ma.The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen.The∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes,suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate.Next,the∼376-373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting.Finally,the∼254 Ma diabase dykes intruded into the∼269 Ma granitoids,which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction.Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau.The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.展开更多
Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ...To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
In this paper, we propose a heterogeneous multi-stage model to study the effect of social reinforcement on information propagation. Both heterogeneity of network components and the heterogeneity of individual reinforc...In this paper, we propose a heterogeneous multi-stage model to study the effect of social reinforcement on information propagation. Both heterogeneity of network components and the heterogeneity of individual reinforcement thresholds are considered. An information outbreak condition is derived, according to which the outbreak scale and individual density of each state under specific propagation parameters can be deduced. Monte Carlo experiments are conducted in Facebook networks to demonstrate the outbreak condition, and we find that social reinforcement effects generally inhibit the propagation of information though it contributes to the emergence of certain hot spots simultaneously. Additionally, by applying Pontryagin's Maximum Principle, we derive the optimal control strategy in the case of limited control resources to maximize the information propagation. Then the forward–backward sweep method is utilized to verify its performance with numerical simulation.展开更多
文摘Because of an explosive growth of the intrusions, necessity of anomaly-based Intrusion Detection Systems (IDSs) which are capable of detecting novel attacks, is increasing. Among those systems, flow-based detection systems which use a series of packets exchanged between two terminals as a unit of observation, have an advantage of being able to detect anomaly which is included in only some specific sessions. However, in large-scale networks where a large number of communications takes place, analyzing every flow is not practical. On the other hand, a timeslot-based detection systems need not to prepare a number of buffers although it is difficult to specify anomaly communications. In this paper, we propose a multi-stage anomaly detection system which is combination of timeslot-based and flow-based detectors. The proposed system can reduce the number of flows which need to be subjected to flow-based analysis but yet exhibits high detection accuracy. Through experiments using data set, we present the effectiveness of the proposed method.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the King Abdullah University of Science and Technology(KAUST)。
文摘Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金financially supported by the Heilongjiang Provincial Key R&D Program Project(No.GA21A204)Heilongjiang Provincial Natural Science Foundation of China(No.LH2022D031)the Research Project of Heilongjiang Province Bureau of Geology and Mineral Resources(No.HKY202302).
文摘Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.
文摘This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.
基金supported by the National Natural Science Foundation of China(Grant No:52271300,52071337)National Key Research and Development Program of China(2022YFC2806501)+1 种基金High-tech Ship Research Projects Sponsored by MIIT(CBG2N21-4-25)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58).
文摘A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金This work is supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474)+1 种基金the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089)and in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.
基金supported by the Opening Fund of Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes(No.Y840041117)the National Natural Science Foundation of China(No.42102199).
文摘Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution.Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes,yielding ages of∼426,∼376-373 and∼269-254 Ma.The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen.The∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes,suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate.Next,the∼376-373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting.Finally,the∼254 Ma diabase dykes intruded into the∼269 Ma granitoids,which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction.Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau.The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.
基金supported by the“National Natural Science Foundation of China”(Grant Nos.52105106,52305155)the“Jiangsu Province Natural Science Foundation”(Grant Nos.BK20210342,BK20230904)the“Young Elite Scientists Sponsorship Programby CAST”(Grant No.2023JCJQQT061).
文摘To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.61873194)
文摘In this paper, we propose a heterogeneous multi-stage model to study the effect of social reinforcement on information propagation. Both heterogeneity of network components and the heterogeneity of individual reinforcement thresholds are considered. An information outbreak condition is derived, according to which the outbreak scale and individual density of each state under specific propagation parameters can be deduced. Monte Carlo experiments are conducted in Facebook networks to demonstrate the outbreak condition, and we find that social reinforcement effects generally inhibit the propagation of information though it contributes to the emergence of certain hot spots simultaneously. Additionally, by applying Pontryagin's Maximum Principle, we derive the optimal control strategy in the case of limited control resources to maximize the information propagation. Then the forward–backward sweep method is utilized to verify its performance with numerical simulation.