Rare-earth based frustrated magnets have attracted great attention as excellent candidates for magnetic refrigeration at sub-Kelvin temperatures,while the experimental identification of systems exhibiting both large v...Rare-earth based frustrated magnets have attracted great attention as excellent candidates for magnetic refrigeration at sub-Kelvin temperatures,while the experimental identification of systems exhibiting both large volumetric cooling capacity and reduced working temperatures far below 1K remains a challenge.Here,through ultra-low temperature magnetism and thermodynamic characterizations,we unveil the large magnetocaloric effect(MCE)realized at sub-Kelvin temperatures in the frustrated Kagome antiferromagnet Gd_(3)BWO_(9)with T_(N)∼1.0 K.The isothermal magnetization curves indicate the existence of field(B)induced anisotropic magnetic phase diagrams,where four distinct magnetic phases for B‖c-axis and five magnetic phases for B‖ab-plane are identified at T<T_(N).The analysis of magnetic entropy S(B,T)data and direct adiabatic demagnetization tests reveal remarkable cooling performance at sub-Kelvin temperatures featured by a large volumetric entropy density of 502.2 mJ/K/cm^(3)and a low attainable minimal temperature T_(min)∼168mK from the initial cooling condition of 2K and 6 T,surpassing most Gd-based refrigerants previously documented in temperature ranges of 0.25–4 K.The realized T_(min)∼168mK far below T_(N)∼1.0K in Gd_(3)BWO_(9)is related to the combined effects of magnetic frustration and criticality-enhanced MCE,which together leave substantial magnetic entropy at reduced temperatures by enhancing spin fluctuations.展开更多
Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large e...Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large elastocaloric effect with high refrigeration efficiency is realized in a polycrystalline Co_(50)V_(35)Ga_(15)Heusler alloy.Experimental results show that the studied alloy undergoes a paramagnetic type MT from L2_(1)cubic austenite to D0_(22)tetragonal martensite with a small thermal hysteresis(ΔT_(hys))of~3 K.By carefully examining the strain rate dependence of superelastic response,it is also found that the stress hysteresis(Δσ_(hys))consists of two components including intrinsic stress hysteresis(Δσ_(hys)^(int.))caused by inherent attribute of MT and extrinsic stress hysteresis(Δσ_(hys)^(ext.))aroused by applied strain rate.Accordingly,we put forward a strain relaxation equation to separate the relative contributions betweenΔσ_(hys)^(int.)andΔσ_(hys)^(ext.)quantitatively,which demonstrates that a smallΔT_(hys)is conducive to substantial decrease inΔσ_(hys)^(int.).Moreover,associated with stress-induced superelastic MT,large reversible adiabatic temperature changes(ΔT_(ad))higher than 11 K are achieved under an applied strain of 6.5%over a temperature range of at least 60 K.With the combination of a large elastocaloric cooling capacity and a low energy dissipation,significant improvements in refrigeration efficiency can be obtained in a wide strain range,being superior to those reported in most of typical elastocaloric materials near room temperature.展开更多
To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized pur...To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized purge-and-trap(μP&T) device integrating semiconductor refrigeration storage was developed in this work. Water samples were poured into the purge vessels and purged with purified air generated by an air pump. The VOCs in water samples were then separated and preconcentrated with sorbent tubes. After their complete separation and preconcentration, the tubes were subsequently preserved in the semiconductor refrigeration unit of the μP&T device. Notably, the high integration, small size, light weight, and low power consumption of the device makes it easy to be hand-carried to the field and transport by drone from remote locations, significantly enhancing the flexibility of field sampling. The performances of the device were evaluated by comparing analytical figures of merit for the detection of four cyclic volatile methylsiloxanes(cVMSs) in water. Compared to conventional collection and preservation methods, our proposed device preserved the VOCs more consistently in the sorbent tubes, with less than 5% loss of all analytes, and maintained stability for at least 20 days at 4℃. As a proof-of-concept,10 municipal wastewater samples were pretreated using this device with recoveries ranging from 82.5% to 99.9% for the target VOCs.展开更多
As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal con...As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances.展开更多
Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solution...Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solutions to enhance efficiency while minimizing energy usage.This paper investigates the integration of Phase Change Materials(PCMs)into a vapor compression refrigeration system to enhance energy efficiency and temperature regulation for food preservation.A multifunctional prototype was tested under two configurations:(1)a standard thermally insulated room,and(2)the same room augmented with eutectic plates filled with either Glaceol(-10℃ melting point)or distilled water(0℃ melting point).Thermocouples were calibrated and deployed to record air and PCM temperatures during freeze–thaw cycles at thermostat setpoints of and Additionally,a-30℃ -35℃ .defrosting resistor and timer were added to mitigate frost buildup,a known cause of efficiency loss.The experimental results show that PCM-enhanced rooms achieved up to 10.98℃ greater temperature stability during defrost cycles and reduced energy consumption by as much as 7.76%(from 0.4584 to 0.4231 kWh/h).Moreover,the effectiveness of PCMs depended strongly on thermostat settings and PCM type,with distilled water demonstrating broader solidification across plates under higher ambient loads.These findings highlight the potential of PCM integration to improve cold-chain performance,offering rapid cooling,moisture retention,and extended product conservation during power interruptions.展开更多
In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening th...In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening the reform of education and teaching.As an important branch in the field of engineering,the refrigeration and air conditioning major not only undertakes the professional mission of cultivating technical talents in the industry,but also shoulders the era responsibility of implementing the fundamental task of cultivating morality and talents.Combining with the characteristics of the refrigeration and air conditioning major,this paper systematically analyzes the internal logic and practical significance of the integration of innovation and entrepreneurship education and curriculum ideology and politics,and explores its implementation paths in aspects such as the excavation of curriculum content,the innovation of teaching methods,the construction of practical platforms and the optimization of evaluation systems.It aims to provide practical reference and theoretical support for promoting the collaborative education of professional education and ideological and political education.展开更多
Thus far,metal-bonding has presented high efficacy in improving the mechanical,thermal conductive,and anti-corrosion properties of La(Fe,Si)_(13)-based hydrides.However,to ensure high performance,the proportion of met...Thus far,metal-bonding has presented high efficacy in improving the mechanical,thermal conductive,and anti-corrosion properties of La(Fe,Si)_(13)-based hydrides.However,to ensure high performance,the proportion of metal bonders has to be as high as 20 wt%,thereby significantly weakening the magnetocaloric effect(MCE).In this work,small amounts of graphene nanosheets(up to 2 wt%)with high thermal conductivity and specific surface area were incorporated into the La_(0.8)Ce_(0.2)Fe_(11.7)Si_(1.3)Hymatrix through a cold-pressing and sintering process.X-ray diffraction analysis indicates that carbon from graphene can easily diffuse into the lattice of La(Fe,Si)13main phase as an interstitial atom,resulting in a significant increase of the lattice constant accompanied by a significant decrease of the Curie temperature and H content of the composites.While 0.3 wt%graphene doping only has minor improvements in the thermal conductivityλand corrosion resistance of the parent La_(0.8)Ce_(0.2)Fe_(11.7)Si_(1.3)H_(y),further increase of graphene content to 1 wt%causes a significant increase ofλfrom 1.4 W/(m·K)for the parent material to~2 W/(m·K)and a decrease of corrosion current density from 1.43×10^(-5)to 9.63×10^(-6)A/cm^(2).When the graphene content is lower than 0.3 wt%,the large MCE does not significantly deteriorate.In 0-1.5 T,the maximal magnetic-entropy change ASm of 11.5 J/(kg·K)at 336 K for the parent material decreases to 8.2 J/(kg·K)at 306 K for the 2 wt%graphene-dop ed composite.展开更多
Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pa...Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle fo...A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.展开更多
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated ...This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ...In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization meth...The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization method.In this paper,a short-cut optimization method with high efficiency and effectiveness is introduced for both conventional and electric air-cycle refrigeration systems.Based on the system characteristics,a four-layer parameter matching algorithm is designed which avoids computational difficulty caused by simultaneous equations.Fuel penalty is chosen as the objective function of optimization;design variables are reduced based on sensitivity analysis to improve optimization efficiency.The results show that the 3-variable optimization of the conventional air-cycle refrigeration system can obtain almost the same results as the traditional 6-variable optimization in that these two optimizations can both significantly reduce the fuel penalty.However,the computer running time of the 3-variable optimization is much shorter than that of the 6-variable optimization.The optimal fuel penalty of the electric air-cycle refrigeration system is lower than that of the conventional one.This study can provide reference for optimizing the aircycle refrigeration system of aircraft.展开更多
The LaFe11.9–x Cox Si1.1 B0.25 with x=0.9 and x=0.82 compounds were synthesized from commercial purity raw materials.The magnetic property of LaFe11.9–x Cox Si1.1 B0.25 and Gd particles were tested on the reciprocat...The LaFe11.9–x Cox Si1.1 B0.25 with x=0.9 and x=0.82 compounds were synthesized from commercial purity raw materials.The magnetic property of LaFe11.9–x Cox Si1.1 B0.25 and Gd particles were tested on the reciprocating refrigerator at the same condition in order to compare the cooling capacity of the two materials.The results showed that the cooling velocity of Gd was obviously higher than that of LaFe11.9–x Cox Si1.1 B0.25.The maximum temperature span was 12.7 oC for LaFe11.0 Co0.9 Si1.1 B0.25,14.9 oC for Gd metal whose mass is the same as that of LaFe11.0 Co0.9 Si1.1 B0.25,8.1 oC for Gd metal whose volume is the same as that of LaFe11.0 Co0.9 Si1.1 B0.25.Series connection of LaFe11.0 Co0.9 Si1.1 B0.25 and LaFe11.08 Co0.82 Si1.1 B0.25 had the maximum cooling temperature span of 15.3 oC.展开更多
Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of ...Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.展开更多
In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is desi...In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.展开更多
A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investi...A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.展开更多
基金supported by the National Key Research and Development Program(Grant Nos.2024YFA1611200 and 2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.12141002 and 52088101)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB1270000)。
文摘Rare-earth based frustrated magnets have attracted great attention as excellent candidates for magnetic refrigeration at sub-Kelvin temperatures,while the experimental identification of systems exhibiting both large volumetric cooling capacity and reduced working temperatures far below 1K remains a challenge.Here,through ultra-low temperature magnetism and thermodynamic characterizations,we unveil the large magnetocaloric effect(MCE)realized at sub-Kelvin temperatures in the frustrated Kagome antiferromagnet Gd_(3)BWO_(9)with T_(N)∼1.0 K.The isothermal magnetization curves indicate the existence of field(B)induced anisotropic magnetic phase diagrams,where four distinct magnetic phases for B‖c-axis and five magnetic phases for B‖ab-plane are identified at T<T_(N).The analysis of magnetic entropy S(B,T)data and direct adiabatic demagnetization tests reveal remarkable cooling performance at sub-Kelvin temperatures featured by a large volumetric entropy density of 502.2 mJ/K/cm^(3)and a low attainable minimal temperature T_(min)∼168mK from the initial cooling condition of 2K and 6 T,surpassing most Gd-based refrigerants previously documented in temperature ranges of 0.25–4 K.The realized T_(min)∼168mK far below T_(N)∼1.0K in Gd_(3)BWO_(9)is related to the combined effects of magnetic frustration and criticality-enhanced MCE,which together leave substantial magnetic entropy at reduced temperatures by enhancing spin fluctuations.
基金supported by the National Natural Science Foundation of China(Nos.52261035,52201223,52371006,52371194)Applied Basic Projects of Yunnan province(No.202101BA070001-233).
文摘Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large elastocaloric effect with high refrigeration efficiency is realized in a polycrystalline Co_(50)V_(35)Ga_(15)Heusler alloy.Experimental results show that the studied alloy undergoes a paramagnetic type MT from L2_(1)cubic austenite to D0_(22)tetragonal martensite with a small thermal hysteresis(ΔT_(hys))of~3 K.By carefully examining the strain rate dependence of superelastic response,it is also found that the stress hysteresis(Δσ_(hys))consists of two components including intrinsic stress hysteresis(Δσ_(hys)^(int.))caused by inherent attribute of MT and extrinsic stress hysteresis(Δσ_(hys)^(ext.))aroused by applied strain rate.Accordingly,we put forward a strain relaxation equation to separate the relative contributions betweenΔσ_(hys)^(int.)andΔσ_(hys)^(ext.)quantitatively,which demonstrates that a smallΔT_(hys)is conducive to substantial decrease inΔσ_(hys)^(int.).Moreover,associated with stress-induced superelastic MT,large reversible adiabatic temperature changes(ΔT_(ad))higher than 11 K are achieved under an applied strain of 6.5%over a temperature range of at least 60 K.With the combination of a large elastocaloric cooling capacity and a low energy dissipation,significant improvements in refrigeration efficiency can be obtained in a wide strain range,being superior to those reported in most of typical elastocaloric materials near room temperature.
基金the National Natural Science Foundation of China (No. 22306146)the PhD Scientific Research Startup Foundation of Xihua University (No. RX2200002003) for their financial support。
文摘To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized purge-and-trap(μP&T) device integrating semiconductor refrigeration storage was developed in this work. Water samples were poured into the purge vessels and purged with purified air generated by an air pump. The VOCs in water samples were then separated and preconcentrated with sorbent tubes. After their complete separation and preconcentration, the tubes were subsequently preserved in the semiconductor refrigeration unit of the μP&T device. Notably, the high integration, small size, light weight, and low power consumption of the device makes it easy to be hand-carried to the field and transport by drone from remote locations, significantly enhancing the flexibility of field sampling. The performances of the device were evaluated by comparing analytical figures of merit for the detection of four cyclic volatile methylsiloxanes(cVMSs) in water. Compared to conventional collection and preservation methods, our proposed device preserved the VOCs more consistently in the sorbent tubes, with less than 5% loss of all analytes, and maintained stability for at least 20 days at 4℃. As a proof-of-concept,10 municipal wastewater samples were pretreated using this device with recoveries ranging from 82.5% to 99.9% for the target VOCs.
基金Project supported by the National Key R&D Program of China(2021YFB3501204)the National Science Fund for Distinguished Young Scholars(51925605)+1 种基金the National Science Foundation for Excellent Young Scholars(52222107)the National Natural Science Foundation of China(52171195,52201036)。
文摘As one of the core components of a magnetic refrigerator,magnetic refrigeration materials are expected to have not only a considerable magnetocaloric effect but also excellent thermal conductivity.The poor thermal conductivity of many competitive oxide-based magnetic refrigerants,exemplified by EuTiO3-based compounds,acts as a major limitation to their practical application.Therefore,improving the thermal conductivity of magnetic refrigeration materials has become a research emphasis of magnetic refrigeration in recent years.In this work,a series of EuTiO_(3)(ETO)/Cu composites with different copper additives was prepared using a solid-phase reaction method by introducing appropriate amounts of copper powder.The influence of the introduction of copper on the phase composition,microstructure,thermal conductivity,and magnetocaloric effect of the composites was systematically investigated.Unexpectedly,the thermal conductivity of the composites is enhanced by up to 260%due to copper addition,accompanied by only a 5%decrease in magnetic entropy change and refrigerating capacity.Copper additive forms localized thermal conductive networks and promotes the densification process,resulting in significantly enhanced thermal conductivity of the composites.This work demonstrates the feasibility of improving the thermal conductivity of oxide-base d magnetic refrigeration materials by introducing highly thermally conductive substances.
基金supported in entire part by the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Refrigeration systems are essential across various sectors,including food preservation,medical storage,and climate control.However,their high energy consumption and environmental impact necessitate innovative solutions to enhance efficiency while minimizing energy usage.This paper investigates the integration of Phase Change Materials(PCMs)into a vapor compression refrigeration system to enhance energy efficiency and temperature regulation for food preservation.A multifunctional prototype was tested under two configurations:(1)a standard thermally insulated room,and(2)the same room augmented with eutectic plates filled with either Glaceol(-10℃ melting point)or distilled water(0℃ melting point).Thermocouples were calibrated and deployed to record air and PCM temperatures during freeze–thaw cycles at thermostat setpoints of and Additionally,a-30℃ -35℃ .defrosting resistor and timer were added to mitigate frost buildup,a known cause of efficiency loss.The experimental results show that PCM-enhanced rooms achieved up to 10.98℃ greater temperature stability during defrost cycles and reduced energy consumption by as much as 7.76%(from 0.4584 to 0.4231 kWh/h).Moreover,the effectiveness of PCMs depended strongly on thermostat settings and PCM type,with distilled water demonstrating broader solidification across plates under higher ambient loads.These findings highlight the potential of PCM integration to improve cold-chain performance,offering rapid cooling,moisture retention,and extended product conservation during power interruptions.
基金Undergraduate Teaching Research and Reform Project of the University of Shanghai for Science and Technology(Project No.:JGXM202526)。
文摘In the background of reform of higher education in the new era,how to organically integrate innovation and entrepreneurship education with curriculum ideology and politics has become a key proposition for deepening the reform of education and teaching.As an important branch in the field of engineering,the refrigeration and air conditioning major not only undertakes the professional mission of cultivating technical talents in the industry,but also shoulders the era responsibility of implementing the fundamental task of cultivating morality and talents.Combining with the characteristics of the refrigeration and air conditioning major,this paper systematically analyzes the internal logic and practical significance of the integration of innovation and entrepreneurship education and curriculum ideology and politics,and explores its implementation paths in aspects such as the excavation of curriculum content,the innovation of teaching methods,the construction of practical platforms and the optimization of evaluation systems.It aims to provide practical reference and theoretical support for promoting the collaborative education of professional education and ideological and political education.
基金Project supported by the National Natural Science Foundation of China(52171187,52271192)。
文摘Thus far,metal-bonding has presented high efficacy in improving the mechanical,thermal conductive,and anti-corrosion properties of La(Fe,Si)_(13)-based hydrides.However,to ensure high performance,the proportion of metal bonders has to be as high as 20 wt%,thereby significantly weakening the magnetocaloric effect(MCE).In this work,small amounts of graphene nanosheets(up to 2 wt%)with high thermal conductivity and specific surface area were incorporated into the La_(0.8)Ce_(0.2)Fe_(11.7)Si_(1.3)Hymatrix through a cold-pressing and sintering process.X-ray diffraction analysis indicates that carbon from graphene can easily diffuse into the lattice of La(Fe,Si)13main phase as an interstitial atom,resulting in a significant increase of the lattice constant accompanied by a significant decrease of the Curie temperature and H content of the composites.While 0.3 wt%graphene doping only has minor improvements in the thermal conductivityλand corrosion resistance of the parent La_(0.8)Ce_(0.2)Fe_(11.7)Si_(1.3)H_(y),further increase of graphene content to 1 wt%causes a significant increase ofλfrom 1.4 W/(m·K)for the parent material to~2 W/(m·K)and a decrease of corrosion current density from 1.43×10^(-5)to 9.63×10^(-6)A/cm^(2).When the graphene content is lower than 0.3 wt%,the large MCE does not significantly deteriorate.In 0-1.5 T,the maximal magnetic-entropy change ASm of 11.5 J/(kg·K)at 336 K for the parent material decreases to 8.2 J/(kg·K)at 306 K for the 2 wt%graphene-dop ed composite.
文摘Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
基金The National Natural Science Foundation of China(No.50776016)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
文摘This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
基金The National Natural Science Foundation of China(No.51176029)
文摘In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金the financial supports from Pre-research Project of National Defense FoundationNational Natural Science Foundation of China(No.51706232)。
文摘The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization method.In this paper,a short-cut optimization method with high efficiency and effectiveness is introduced for both conventional and electric air-cycle refrigeration systems.Based on the system characteristics,a four-layer parameter matching algorithm is designed which avoids computational difficulty caused by simultaneous equations.Fuel penalty is chosen as the objective function of optimization;design variables are reduced based on sensitivity analysis to improve optimization efficiency.The results show that the 3-variable optimization of the conventional air-cycle refrigeration system can obtain almost the same results as the traditional 6-variable optimization in that these two optimizations can both significantly reduce the fuel penalty.However,the computer running time of the 3-variable optimization is much shorter than that of the 6-variable optimization.The optimal fuel penalty of the electric air-cycle refrigeration system is lower than that of the conventional one.This study can provide reference for optimizing the aircycle refrigeration system of aircraft.
基金supported by National High Technology Research and Development Program of China(2011AA03A404)International Cooperation Program(2011DFA53230)+1 种基金National Natural Science Foundation of China(51261001)Science Foundation of Inner Mongolia(2011MS0801)
文摘The LaFe11.9–x Cox Si1.1 B0.25 with x=0.9 and x=0.82 compounds were synthesized from commercial purity raw materials.The magnetic property of LaFe11.9–x Cox Si1.1 B0.25 and Gd particles were tested on the reciprocating refrigerator at the same condition in order to compare the cooling capacity of the two materials.The results showed that the cooling velocity of Gd was obviously higher than that of LaFe11.9–x Cox Si1.1 B0.25.The maximum temperature span was 12.7 oC for LaFe11.0 Co0.9 Si1.1 B0.25,14.9 oC for Gd metal whose mass is the same as that of LaFe11.0 Co0.9 Si1.1 B0.25,8.1 oC for Gd metal whose volume is the same as that of LaFe11.0 Co0.9 Si1.1 B0.25.Series connection of LaFe11.0 Co0.9 Si1.1 B0.25 and LaFe11.08 Co0.82 Si1.1 B0.25 had the maximum cooling temperature span of 15.3 oC.
基金Supported by the China Postdoctoral Science Foundation(2014M552195)the State Key Laboratory Foundation of Subtropical Building,South China University of Technology(2013ZC13)the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology(2013A061401005)
文摘Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.
文摘In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.
文摘A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.