期刊文献+
共找到2,182篇文章
< 1 2 110 >
每页显示 20 50 100
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
1
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Load Reduction Test Method of Similarity Theory and BP Neural Networks of Large Cranes 被引量:4
2
作者 YANG Ruigang DUAN Zhibin +2 位作者 LU Yi WANG Lei XU Gening 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期145-151,共7页
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv... Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes. 展开更多
关键词 similarity theory BP neural network large bridge crane load reduction equivalent test method
在线阅读 下载PDF
Accessing Multi-Source Geological Data through Network in MORPAS Software System 被引量:3
3
作者 MeiHongbo HuGuangdao +1 位作者 ChinJian~o LiZhenhua 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期265-268,共4页
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,... MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system. 展开更多
关键词 multi-source geological data SQL Server accessing data through network
在线阅读 下载PDF
Mining Social Groups with Weighted Similarity in Campus Wireless Network 被引量:1
4
作者 吴利兵 薛广涛 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期99-102,共4页
With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this... With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network . 展开更多
关键词 wireless network weighted similarity social groups unsupervised learning CLUSTERING
在线阅读 下载PDF
MMLUP: Multi-Source & Multi-Task Learning for User Profiles in Social Network 被引量:1
5
作者 Dongjie Zhu Yuhua Wang +5 位作者 Chuiju You Jinming Qiu Ning Cao Chenjing Gong Guohua Yang Helen Min Zhou 《Computers, Materials & Continua》 SCIE EI 2019年第9期1105-1115,共11页
With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integ... With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media data.How to integrate multiple heterogeneous information and establish user profiles from multiple perspectives plays an important role in providing personalized services,marketing,and recommendation systems.In this paper,we propose Multi-source&Multi-task Learning for User Profiles in Social Network which integrates multiple social data sources and contains a multi-task learning framework to simultaneously predict various attributes of a user.Firstly,we design their own feature extraction models for multiple heterogeneous data sources.Secondly,we design a shared layer to fuse multiple heterogeneous data sources as general shared representation for multi-task learning.Thirdly,we design each task’s own unique presentation layer for discriminant output of specific-task.Finally,we design a weighted loss function to improve the learning efficiency and prediction accuracy of each task.Our experimental results on more than 5000 Sina Weibo users demonstrate that our approach outperforms state-of-the-art baselines for inferring gender,age and region of social media users. 展开更多
关键词 User profiles multi-source multi-task learning social network
在线阅读 下载PDF
Sentence Similarity Measurement with Convolutional Neural Networks Using Semantic and Syntactic Features 被引量:1
6
作者 Shiru Zhang Zhiyao Liang Jian Lin 《Computers, Materials & Continua》 SCIE EI 2020年第5期943-957,共15页
Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similari... Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similarity score between two sentences is computed as follows.First,given a sentence,two matrices are constructed accordingly,which are called the syntax model input matrix and the semantic model input matrix;one records some syntax features,and the other records some semantic features.By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices,we adopt the most effective way of constructing the matrices.Second,these two matrices are given to two neural networks,which are called the sentence model and the semantic model,respectively.The convolution process of the neural networks of the two models is carried out in multiple perspectives.The outputs of the two models are combined as a vector,which is the representation of the sentence.Third,given the representation vectors of two sentences,the similarity score of these representations is computed by a layer in the CNN.Experiment results show that our algorithm(SSCNN)surpasses the performance MPCPP,which noticeably the best recent work of using CNN for sentence similarity computation.Comparing with MPCNN,the convolution computation in SSCNN is considerably simpler.Based on the results of this work,we suggest that by further utilization of semantic and syntactic features,the performance of sentence similarity measurements has considerable potentials to be improved in the future. 展开更多
关键词 Sentence similarity neural network convolutional neural networks
在线阅读 下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
7
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
在线阅读 下载PDF
Automatic infrared image recognition method for substation equipment based on a deep self-attention network and multi-factor similarity calculation 被引量:1
8
作者 Yaocheng Li Yongpeng Xu +4 位作者 Mingkai Xu Siyuan Wang Zhicheng Xie Zhe Li Xiuchen Jiang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期397-408,共12页
Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpret... Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpretable,and have limited training data.To address these limitations,this paper proposes an automatic infrared image recognition framework,which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation.First,the features of an input image are extracted and embedded using a multi-head attention encoding-decoding mechanism.Thereafter,the embedded features are used to predict the equipment component category and location.In the located area,preliminary segmentation is performed.Finally,similar areas are gradually merged,and the temperature distribution of the equipment is obtained to identify a fault.Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and,hence,provides a good reference for the automation of power equipment inspection. 展开更多
关键词 Substation equipment Infrared image intelligent recognition Deep self-attention network Multi-factor similarity calculation
在线阅读 下载PDF
An Intrusion Alarming System Based on Self-Similarity of Network Traffic 被引量:4
9
作者 YUFei ZHUMiao-liang +2 位作者 CHENYu-feng LIRen-fa XUCheng 《Wuhan University Journal of Natural Sciences》 CAS 2005年第1期169-173,共5页
Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t... Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time. 展开更多
关键词 intrusion detection SELF-similarity network traffic model: networkprocessor
在线阅读 下载PDF
A Binary Vulnerability Similarity Detection Model Based on Deep Graph Matching
10
作者 Yangzhi Zhang 《Journal of Electronic Research and Application》 2025年第5期291-298,共8页
To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize... To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize data graphs,and an LSTM layer to extract the associations between word and graph vectors.A Dropout layer is applied to randomly deactivate neurons in the LSTM layer,while a Softmax layer maps the LSTM analysis results.Finally,a fully connected layer outputs the detection results with a dimension of 1.Experimental results demonstrate that the AUC of the deep graph matching vulnerability similarity detection model is 0.9721,indicating good stability.The similarity scores for vulnerabilities such as memory leaks,buffer overflows,and targeted attacks are close to 1,showing significant similarity.In contrast,the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less than 0.4,indicating good similarity detection performance.The model’s evaluation metrics are all above 97%,with high detection accuracy,which is beneficial for improving network security. 展开更多
关键词 network security Word vectors Graph vector matrix Deep graph matching Vulnerability similarity
在线阅读 下载PDF
Efficient Similarity Search Based on Semantic Trajectories in Road Networks
11
作者 WU Xia ZHU Yuanyuan +1 位作者 PENG Yuwei PENG Zhiyong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第4期347-354,共8页
In recent years, a few researches focus on the similarity measure of semantic trajectories in road networks, since semantic trajectories in road networks have smaller volumes, higher qualities and can better reflect u... In recent years, a few researches focus on the similarity measure of semantic trajectories in road networks, since semantic trajectories in road networks have smaller volumes, higher qualities and can better reflect user behaviors. However, these works do not further discuss how to efficiently search similar trajectories. Thus, to implement an efficient similarity search, we design an index called SIET based on the structures of road networks. Then, we propose a novel algorithm called SSN-BF to search similar trajectories efficiently by using best-first strategy. At last, we take the experimental evaluations on real dataset and prove the efficiency of our algorithm. 展开更多
关键词 semantic trajectory road network trajectory search similarity search
原文传递
A weight's agglomerative method for detecting communities in weighted networks based on weight's similarity
12
作者 沈毅 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期171-178,共8页
This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady ... This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient t~ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n2 log~). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of t~ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups. 展开更多
关键词 complex networks weight's similarity community structure weight's agglomerative method
原文传递
INTS-MFS:A novel method to predict microRNA-disease associations by integrating network topology similarity and microRNA function similarity
13
作者 BUWEN CAO JIAWEI LUO +2 位作者 SAINAN XIAO KAI ZHAO SHULING YANG 《BIOCELL》 SCIE 2022年第3期837-845,共9页
Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first... Identifying associations between microRNAs(miRNAs)and diseases is very important to understand the occurrence and development of human diseases.However,these existing methods suffer from the following limitation:first,some disease-related miRNAs are obtained from the miRNA functional similarity networks consisting of heterogeneous data sources,i.e.,disease similarity,protein interaction network,gene expression.Second,little approaches infer disease-related miRNAs depending on the network topological features without the functional similarity of miRNAs.In this paper,we develop a novel model of Integrating Network Topology Similarity and MicroRNA Function Similarity(INTS-MFS).The integrated miRNA similarities are calculated based on miRNA functional similarity and network topological characteristics.INTS-MFS obtained AUC of 0.872 based on five-fold cross-validation and was applied to three common human diseases in case studies.As a results,30 out of top 30 predicted Prostatic Neoplasm-related miRNAs were included in the two databases of dbDEMC and PhenomiR2.0.29 out of top 30 predicted Lung Neoplasm-related miRNAs and Breast Neoplasm-related miRNAs were included in dbDEMC,PhenomiR2.0 and experimental reports.Moreover,INTS-MFS found unknown association with hsa-mir-371a in breast cancer and lung cancer,which have not been reported.It provides biologists new clues for diagnosing breast and lung cancer. 展开更多
关键词 Disease-related miRNA MiRNA-disease association Functional similarity network topological similarity
在线阅读 下载PDF
Coarse Graining Method Based on Noded Similarity in Complex Network
14
作者 Yingying Wang Zhen Jia Lang Zeng 《Communications and Network》 2018年第3期51-64,共14页
Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex... Coarse graining of complex networks is an important method to study large-scale complex networks, and is also in the focus of network science today. This paper tries to develop a new coarse-graining method for complex networks, which is based on the node similarity index. From the information structure of the network node similarity, the coarse-grained network is extracted by defining the local similarity and the global similarity index of nodes. A large number of simulation experiments show that the proposed method can effectively reduce the size of the network, while maintaining some statistical properties of the original network to some extent. Moreover, the proposed method has low computational complexity and allows people to freely choose the size of the reduced networks. 展开更多
关键词 COMPLEX network Coarse GRAINING NODE similarity STATISTICAL PROPERTIES
在线阅读 下载PDF
Risk Analysis Using Multi-Source Data for Distribution Networks Facing Extreme Natural Disasters
15
作者 Jun Yang Nannan Wang +1 位作者 Jiang Wang Yashuai Luo 《Energy Engineering》 EI 2023年第9期2079-2096,共18页
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera... Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters. 展开更多
关键词 Distribution network disaster damage analysis fault judgment multi-source data
在线阅读 下载PDF
Functional Brain Network Learning Based on Spatial Similarity for Brain Disorders Identification
16
作者 Lei Sun Tingting Guo 《Journal of Applied Mathematics and Physics》 2020年第11期2427-2437,共11页
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc... Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods. 展开更多
关键词 Functional Brain network Pearson’s Correction Sparse Representation Spatial Relationships similarity Mild Cognitive Impairment
暂未订购
Network Lifetime Global Optimization for Multi-Source and Single-Sink Topology in Wireless Sensor Networks
17
作者 王晖 吴迪 +1 位作者 AGOULMINE Nazim 马懋德 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第2期195-203,共9页
The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with su... The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with such a topology,the joint optimal design in the physical,medium access control(MAC) and network layers is considered for network lifetime maximization(NLM).The problem of integrating multi-layer information to compute NLM,which involves routing flow,link schedule and transmission power,is formulated as a nonlinear optimization problem.Specially under time division multiple access(TDMA) scheme,this problem can be transformed into a convex optimization problem.To solve it analytically we make use of the property that local optimization is global optimization in convex problem.This allows us to exploit the Karush-Kuhn-Tucker (KKT) optimality conditions to solve it and obtain analytical solution expression,i.e.,the globally optimal network lifetime(NL).NL is derived as a function of number of nodes,their initial energy and data rate arrived at them. Based on the analysis of analytical approach,it takes the influence of data rates,link access and routing method over NLM into account.Moreover,the globally optimal transmission schemes are achieved by solution set during analytical approach and applied to algorithms in TDMA-based WSNs aiming at NLM on OMNeT++ to compare with other suboptimal schemes. 展开更多
关键词 multi-source and single-sink (MSSS) topology network lifetime cross-layer optimization Karush- Kuhn-Tucker (KKT) optimality conditions global optimization analytical solution
原文传递
Graph neural network-based similarity relationship construction model for geospatial services
18
作者 Fengying Jin Rui Li Huayi Wu 《Geo-Spatial Information Science》 CSCD 2024年第5期1509-1523,共15页
During the development of service-based software systems,Geospatial Service(GS)replacement is often performed,which requires the discovery of functionally similar services in service registries to replace failed servi... During the development of service-based software systems,Geospatial Service(GS)replacement is often performed,which requires the discovery of functionally similar services in service registries to replace failed services.Compared to real-time similarity computations,direct extraction of similar services from constructed similarity relationships can yield higher replacement efficiency.However,missing and inconsistent service-registry information impedes accurate similarity relationship construction.Here,we propose a Graph Neural Network(GNN)-based model for GS Similarity Relationship construction considering service descriptions and tags,which is named GSSR-GNN.As the sparsity of the service similarity relationship graph constructed based on labeled samples limits the information propagation ability,a graph augmentation method for similarity relationship construction among second-order neighbors is proposed.Considering the differences in the semantic-information feature distributions,such as the service descriptions and tags,a feed-forward neural network-based fusion method is designed to embed them into the same vector space.Pre-trained Bidirectional Encoder Representations from Transformers(BERT)and WordNet models are introduced to enhance the service-representation expressiveness.When an enhanced service representation is input to the GNN,the similarity is calculated and the service similarity relationship is obtained.Experimental results show that the proposed model constructs service similarity relationships with high precision,thus improving the service replacement efficiency and reducing the computational cost of service registry during service replacement. 展开更多
关键词 Geospatial service service similarity relationship service representation graph neural network
原文传递
Components Assignment Problem for Multi-Source Multi-Sink Flow Networks with Reliability and Budget Constraints
19
作者 Noha Nasr Elden Moatamad Hassan Mohamed Abd El-Aziz 《Journal of Computer and Communications》 2022年第6期99-111,共13页
System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic... System reliability optimization problem of multi-source multi-sink flow network is defined by searching the optimal components that maximize the reliability and minimize the total assignment cost. Therefore, a genetic-based approach is proposed to solve the components assignment problem under budget constraint. The mathematical model of the optimization problem is presented and solved by the proposed genetic-based approach. The proposed approach is based on determining the optimal set of lower boundary points that maximize the system reliability such that the total assignment cost does not exceed the specified budget. Finally, to evaluate our approach, we applied it to various network examples with different numbers of available components;two-source two-sink network and three-source two-sink network. 展开更多
关键词 multi-source Multi-Sink Stochastic-Flow networks System Reliability Optimization Components Assignment Problem
在线阅读 下载PDF
SGG-DGCN:Wind Turbine Anomaly Identification by Using Deep Graph Convolutional Networks with Similarity Graph Generation Strategy
20
作者 Xiaomin Wang Di Zhou +2 位作者 Xiao Zhuang Jian Ge and Jiawei Xiang 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第4期258-267,共10页
In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEucli... In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEuclidean space and struggle to capture the complex coupling between wind turbine sensors.To addressthis problem,we convert SCADA data into graph data,where sensors act as nodes and their topologicalconnections act as edges,to represent these complex relationships more efficiently.Specifically,a wind turbineanomaly identification method based on deep graph convolutional neural network using similarity graphgeneration strategy(SGG-DGCN)is proposed.Firstly,a plurality of similarity graphs containing similarityinformation between nodes are generated by different distance metrics.Then,the generated similarity graphs arefused using the proposed similarity graph generation strategy.Finally,the fused similarity graphs are fed into theDGCN model for anomaly identification.To verify the effectiveness of the proposed SGG-DGCN model,we conducted a large number of experiments.The experimental results show that the proposed SGG-DGCNmodel has the highest accuracy compared with other models.In addition,the results of ablation experimentalso demonstrate that the proposed SGG strategy can effectively improve the accuracy of WT anomalyidentification. 展开更多
关键词 anomaly identification deep graph convolutional networks similarity graph generation wind turbine
在线阅读 下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部