Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,s...With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.展开更多
Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their se...Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.展开更多
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These...Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.展开更多
Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disa...Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disaster monitoring system plat- form of Henan Province based on multi-souroe satellite data was further constructed, which realizes dynamic monitoring of agricultural disasters in Henan Province (drought, flood, snow cover and straw burning).展开更多
Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especiall...Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.展开更多
The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitor...The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitoring of the GrIS.In this paper,we present our recent research results from remote sensing-based GrIS change monitoring.First,historical satellite data are processed and used to fill data gaps and are combined with existing partial maps,completing an ice velocity map of the GrIS from the 1960s to 1980s.This map provides valuable data for estimating the historical mass balance of Greenland.Second,the monthly gravimetry-based mass balance of the GrIS from 2002 to 2020 is estimated by combining Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow On(GRACE-FO)data.It is found that the GrIS has lost a total mass of approximately 4443±75 Gt during this period.Third,based on Global Land Ice Measurements from Space(GLIMS),an updated Greenland glacier inventory is achieved utilizing data collected between 2006 and 2020.This inventory provides more detailed and up-to-data glacier boundaries of Greenland.Overall,these advances provide essential data support for estimating the mass balance of the GrIS,contributing to the advancement of research on global sea level change.展开更多
Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status...Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status of soil salinization,CiteSpace software was used to conduct data mining and quantitative analysis on research papers on soil salinization from 2008 to 2023 in China National Knowledge Infrastructure(CNKI)and Web of science databases.The data sources were transformed into visual graphs by reproducing clustering statistics from aspects such as publication volume,authors,keywords,and publishing institutions.In addition,this paper also combined the actual needs and cutting-edge hotspots in relevant research in China,and proposed and analyzed the limitations and future development trends of soil salinity monitoring research in China.This has important practical significance for comprehensively grasping the current research status of salinization,further clarifying and sorting out the research ideas of salinization monitoring,enriching the remote sensing monitoring methods of saline soil,and solving the actual problems of soil salinization in China.展开更多
By means of ground survey and "3S" technology,taking Maduo County in three river sources areas as example,the remote sensing model between biomass and normalized difference vegetation index(NDVI) in sampling point...By means of ground survey and "3S" technology,taking Maduo County in three river sources areas as example,the remote sensing model between biomass and normalized difference vegetation index(NDVI) in sampling points was established after calculating the NDVI distribution of TM image in Maduo County,and the grade distribution map of grassland productivity in Maduo County was obtained according to the grade division of grassland productivity in Qinghai Province,so as to monitor grassland productivity step by step.The results showed that grassland coverage area in Maduo County in 2009 was about 2.22 million hm2,and NDVI was mainly from 0 to 0.5,accounting for 88.64% of total grassland area in Maduo County;there was a significant correlation between biomass and NDVI in sampling point,with the correlation coefficient of above 0.7,and their model could be quantitatively expressed as follows,namely Biomass = 552.632 × NDVI1.137;grassland productivity in Maduo County was 750-3 000 kg/hm2 which occupied 72.1% of total grassland area;the highest grassland productivity in Maduo County was 4 500-6 500 kg/hm2,but it accounted for below 1% of total grassland area.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap...China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
Forest diseases and pests affect the forest health and forestry production, the monitoring of forest diseases and pests by remote sensing has great advantages and potential. The principles, the technical methods and t...Forest diseases and pests affect the forest health and forestry production, the monitoring of forest diseases and pests by remote sensing has great advantages and potential. The principles, the technical methods and the main aspects of monitoring forest diseases and pests by remote sensing are described, and the application prospect of this technology is forecasted.展开更多
The ecological environmental changes of Francois langur natural reserve was monitored during Pengshui Reservoir construction and influence of reservoir fil-ing on the habitat of the natural reserve was analyzed to pro...The ecological environmental changes of Francois langur natural reserve was monitored during Pengshui Reservoir construction and influence of reservoir fil-ing on the habitat of the natural reserve was analyzed to provide the scientific basis and basic data for scientific evaluation and protection of original ecological environ-ment of the natural reserve and Francois langur’s habitat, and vegetation recover. The results showed that 4.8 hm2 of the nature reserve was submerged after reser-voir fil ing, which occupied for 0.1% of total area of the natural reserve only. The main influence area was in the submerged area of Hongdu River basin. The water level rise resulted in partial changes in land utilization and soil erosion, which indi-cates that reservoir fil ing has insignificant effect on ecological environment of the whole natural reserve.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric featur...Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.展开更多
The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollut...The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollution and tourism,which have led to rock deterioration and structural instability.The multi-source monitoring system for the protection of the rock carvings,based on the Internet of Things,includes Global Navigation Satellite System(GNSS)displacement monitoring,static level displacement monitoring,laser rangefinder displacement monitoring,roof pressure sensor monitoring and environmental damage monitoring.This paper analyses data from each sub-monitoring system within the multi-source monitoring system applied to Yuanjue Cave in the Dazu Rock Carvings.Initially,a correlation analysis between climate monitoring data and roof displacement data was carried out to assess the effect of temperature.Based on the results of the analysis,a temperature correction equation for the laser rangefinder was derived to improve the laser rangefinder displacement monitoring system.The improved system was then used to monitor Cave 168,revealing the deformation and erosion patterns of the roof.The research results demonstrate that the multiparameter monitoring system is capable of accurately measuring and analyzing the stability of the Dazu stone carvings,as well as the effects of environmental conditions on them.The use of the Internet of Things(IoT)and real-time data collection to monitor rock deformation and environmental conditions is an innovative application of technology in cultural heritage conservation.Interpretation of the monitoring system and statistical correlation analysis of temperature and laser rangefinder data highlight the thoroughness of the methodology in this paper and its relevance to sustainable mountain development.In the future,multi-source monitoring systems will have a broader application in the conservation of other UNESCO World Heritage Sites.展开更多
Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam ro...Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam roof and floor,and rock burst.Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention.In this sense,it is of great significance to address the requirements for informatizing coal mine geological conditions,dynamically adjust sensing parameters,and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters.This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining.On this basis,it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines.Combined with the multi-field monitoring characteristics of the strain field,the temperature field,and the vibration field of distributed optical fiber sensing technology,parameters such as the strain increment ratio,the aquifer temperature gradient,and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking,aquifer water level,and water cut range,and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters.The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring,identification accuracy of optical fiber acoustic signals,multi-parameter monitoring,and early warning methods.展开更多
Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.The...Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.展开更多
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech...Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.展开更多
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
文摘With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.
基金support provided by Science Foundation Ireland Frontiers for the Future Programme,21/FFP-P/10090.
文摘Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.
基金partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025242)by the Korea government(MIST)(RS-2023-00302751,RS-2024-00343686)the Research Grant of Kwangwoon University in 2024。
文摘Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.
基金Supported by Key Scientific and Technological Project of Henan Province(082102140009)~~
文摘Using 3S technology, relying on earth-space three-dimensional agriculture disaster monitoring network, remote sensing monitoring model for agricultural disaster in Henan Province was established, and agricultural disaster monitoring system plat- form of Henan Province based on multi-souroe satellite data was further constructed, which realizes dynamic monitoring of agricultural disasters in Henan Province (drought, flood, snow cover and straw burning).
基金supported by the National Natural Science Foundation of China(Grant Nos.12302022,12172248,12021002,and 12132010)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.22JCQNJC00780)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(Grant No.KF2024-09)the IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology(Grant No.202306).
文摘Real-time onboard health monitoring systems are critical for the railway industry to maintain high service quality and operational safety.However,the issue with power supplies for monitoring sensors persists,especially for freight trains that lack onboard power.Here,we propose a hybrid piezoelectric-triboelectric rotary generator(HPT-RG)for energy harvesting and vehicle speed sensing.The HPT-RG incorporates a rotational self-adaptive technique that softens the equivalent stiffness,enabling the piezoelectric non-resonant beam to surpass resonance limitations in a low-frequency region.The experiments demonstrate the feasibility of using the HPT-RG as an energy harvesting module to collect the rotational energy of the freight rail transport and power the wireless temperature sensors.To allow multiple monitoring in confined spaces on trains,a triboelectric sensing module is added to the HPT-RG to sense the operation speed and mileage of vehicles.Furthermore,the generator exhibits favorable mechanical durability under more than 600 h of official testing on the train bogie axle.The proposed HPT-RG is essential for creating a truly self-powered,maintenance-free,and zero-carbon onboard wireless monitoring system on freight railways.
文摘The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitoring of the GrIS.In this paper,we present our recent research results from remote sensing-based GrIS change monitoring.First,historical satellite data are processed and used to fill data gaps and are combined with existing partial maps,completing an ice velocity map of the GrIS from the 1960s to 1980s.This map provides valuable data for estimating the historical mass balance of Greenland.Second,the monthly gravimetry-based mass balance of the GrIS from 2002 to 2020 is estimated by combining Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow On(GRACE-FO)data.It is found that the GrIS has lost a total mass of approximately 4443±75 Gt during this period.Third,based on Global Land Ice Measurements from Space(GLIMS),an updated Greenland glacier inventory is achieved utilizing data collected between 2006 and 2020.This inventory provides more detailed and up-to-data glacier boundaries of Greenland.Overall,these advances provide essential data support for estimating the mass balance of the GrIS,contributing to the advancement of research on global sea level change.
基金Supported by Jilin Provincial Department of Education Project(JJKH20230724KJ).
文摘Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status of soil salinization,CiteSpace software was used to conduct data mining and quantitative analysis on research papers on soil salinization from 2008 to 2023 in China National Knowledge Infrastructure(CNKI)and Web of science databases.The data sources were transformed into visual graphs by reproducing clustering statistics from aspects such as publication volume,authors,keywords,and publishing institutions.In addition,this paper also combined the actual needs and cutting-edge hotspots in relevant research in China,and proposed and analyzed the limitations and future development trends of soil salinity monitoring research in China.This has important practical significance for comprehensively grasping the current research status of salinization,further clarifying and sorting out the research ideas of salinization monitoring,enriching the remote sensing monitoring methods of saline soil,and solving the actual problems of soil salinization in China.
基金Supported by National High Technology Research and Development Program of China(863Program)(2008AA10Z223)~~
文摘By means of ground survey and "3S" technology,taking Maduo County in three river sources areas as example,the remote sensing model between biomass and normalized difference vegetation index(NDVI) in sampling points was established after calculating the NDVI distribution of TM image in Maduo County,and the grade distribution map of grassland productivity in Maduo County was obtained according to the grade division of grassland productivity in Qinghai Province,so as to monitor grassland productivity step by step.The results showed that grassland coverage area in Maduo County in 2009 was about 2.22 million hm2,and NDVI was mainly from 0 to 0.5,accounting for 88.64% of total grassland area in Maduo County;there was a significant correlation between biomass and NDVI in sampling point,with the correlation coefficient of above 0.7,and their model could be quantitatively expressed as follows,namely Biomass = 552.632 × NDVI1.137;grassland productivity in Maduo County was 750-3 000 kg/hm2 which occupied 72.1% of total grassland area;the highest grassland productivity in Maduo County was 4 500-6 500 kg/hm2,but it accounted for below 1% of total grassland area.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金Supported by National Natural Science Foundation of China " Multiagent Simulation and Spatial Prediction of Forest Invasive Alien Species and Diffusion"(30871964)Ministry of Education,New Century Excellent Talents Support Project " Ecological Response Mechanism and Prediction of Spatial Pattern Dynamics of Forest Vegetation"(NCET06-0122)Ministry of Education Innovation Team " Early Warning of Major Forest Pest Disasters and Ecological Control Technology " (IRT0607)~~
文摘Forest diseases and pests affect the forest health and forestry production, the monitoring of forest diseases and pests by remote sensing has great advantages and potential. The principles, the technical methods and the main aspects of monitoring forest diseases and pests by remote sensing are described, and the application prospect of this technology is forecasted.
基金Supported by Guizhou Science and Technology Foundation[(2007)2164]Guizhou Science and Technology Plan Project[(2012)3058]~~
文摘The ecological environmental changes of Francois langur natural reserve was monitored during Pengshui Reservoir construction and influence of reservoir fil-ing on the habitat of the natural reserve was analyzed to provide the scientific basis and basic data for scientific evaluation and protection of original ecological environ-ment of the natural reserve and Francois langur’s habitat, and vegetation recover. The results showed that 4.8 hm2 of the nature reserve was submerged after reser-voir fil ing, which occupied for 0.1% of total area of the natural reserve only. The main influence area was in the submerged area of Hongdu River basin. The water level rise resulted in partial changes in land utilization and soil erosion, which indi-cates that reservoir fil ing has insignificant effect on ecological environment of the whole natural reserve.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金financially supported by the Youth Innovation Promotion Association CAS(No.2021325)the National Natural Science Foundation of China(Nos.52179117,U21A20159)the Research project of Panzhihua Iron and Steel Group Mining Co.,Ltd.(No.2021-P6-D2-05)。
文摘Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.
基金financial support from the National Natural Science Foundation of China(No.42377154)。
文摘The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollution and tourism,which have led to rock deterioration and structural instability.The multi-source monitoring system for the protection of the rock carvings,based on the Internet of Things,includes Global Navigation Satellite System(GNSS)displacement monitoring,static level displacement monitoring,laser rangefinder displacement monitoring,roof pressure sensor monitoring and environmental damage monitoring.This paper analyses data from each sub-monitoring system within the multi-source monitoring system applied to Yuanjue Cave in the Dazu Rock Carvings.Initially,a correlation analysis between climate monitoring data and roof displacement data was carried out to assess the effect of temperature.Based on the results of the analysis,a temperature correction equation for the laser rangefinder was derived to improve the laser rangefinder displacement monitoring system.The improved system was then used to monitor Cave 168,revealing the deformation and erosion patterns of the roof.The research results demonstrate that the multiparameter monitoring system is capable of accurately measuring and analyzing the stability of the Dazu stone carvings,as well as the effects of environmental conditions on them.The use of the Internet of Things(IoT)and real-time data collection to monitor rock deformation and environmental conditions is an innovative application of technology in cultural heritage conservation.Interpretation of the monitoring system and statistical correlation analysis of temperature and laser rangefinder data highlight the thoroughness of the methodology in this paper and its relevance to sustainable mountain development.In the future,multi-source monitoring systems will have a broader application in the conservation of other UNESCO World Heritage Sites.
基金National Natural Science Foundation of China,Grant/Award Number:42130706。
文摘Coal mining induces changes in the nature of rock and soil bodies,as well as hydrogeological conditions,which can easily trigger the occurrence of geological disasters such as water inrush,movement of the coal seam roof and floor,and rock burst.Transparency in coal mine geological conditions provides technical support for intelligent coal mining and geological disaster prevention.In this sense,it is of great significance to address the requirements for informatizing coal mine geological conditions,dynamically adjust sensing parameters,and accurately identify disaster characteristics so as to prevent and control coal mine geological disasters.This paper examines the various action fields associated with geological disasters in mining faces and scrutinizes the types and sensing parameters of geological disasters resulting from coal seam mining.On this basis,it summarizes a distributed fiber-optic sensing technology framework for transparent geology in coal mines.Combined with the multi-field monitoring characteristics of the strain field,the temperature field,and the vibration field of distributed optical fiber sensing technology,parameters such as the strain increment ratio,the aquifer temperature gradient,and the acoustic wave amplitude are extracted as eigenvalues for identifying rock breaking,aquifer water level,and water cut range,and a multi-field sensing method is established for identifying the characteristics of mining-induced rock mass disasters.The development direction of transparent geology based on optical fiber sensing technology is proposed in terms of the aspects of sensing optical fiber structure for large deformation monitoring,identification accuracy of optical fiber acoustic signals,multi-parameter monitoring,and early warning methods.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3603403,2021YFB3600502)the National Natural Science Foundation of China(Grant Nos.62075040,62301150)+3 种基金the Southeast University Interdisciplinary Research Program for Young Scholars(2024FGC1007)the Start-up Research Fund of Southeast University(RF1028623164)the Nanjing Science and Technology Innovation Project for Returned Overseas Talent(4206002302)the Fundamental Research Funds for the Central Universities(2242024K40015).
文摘Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.
基金Under the auspices of the National Key Research and Development Program of China(No.2023YFC3208500)Shanghai Municipal Natural Science Foundation(No.22ZR1421500)+3 种基金National Natural Science Foundation of China(No.U2243207)National Science and Technology Basic Resources Survey Project(No.2023FY01001)Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF202406)Project from Science and Technology Commission of Shanghai Municipality(No.22DZ1202700)。
文摘Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.