Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images.To solve this problem,this paper proposes a novel approach with r...Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images.To solve this problem,this paper proposes a novel approach with regard to feature-based remote sensing image registration.There are two key contributions:1)we bring forward an improved strategy of composite nonlinear diffusion filtering according to the scale factors in multi-scale space and 2)we design a gradually decreasing resolution of multi-scale pyramid space.And a binary code string is served as feature descriptors to improve matching efficiency.Extensive experiments of different categories of remote image datasets on feature extraction and feature registration are performed.The experimental results demonstrate the superiority of our proposed scheme compared with other classical algorithms in terms of correct matching ratio,accuracy and computation efficiency.展开更多
In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many met...In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many methods based on evolutionary computation and deep learning have achieved good performance in remote sensing image registration.This paper introduces the application of computational intelligence in remote sensing image registration from the two directions of evolutionary computing and deep learning.In the part of remote sensing image registration based on evolutionary calculation,the principles of evolutionary algorithms and swarm intelligence algorithms are elaborated and their application in remote sensing image registration is discussed.The application of deep learning in remote sensing image registration is also discussed.At the same time,the development status and future of remote sensing image registration are summarized and their prospects are examined.展开更多
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech...Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.展开更多
The geolocation of ground targets by airborne image sensors is an important task for unmanned aerial vehicles or surveillance aircraft.This paper proposes an Iterative Geolocation based on Cross-view Image Registratio...The geolocation of ground targets by airborne image sensors is an important task for unmanned aerial vehicles or surveillance aircraft.This paper proposes an Iterative Geolocation based on Cross-view Image Registration(IGCIR)that can provide real-time target location results with high precision.The proposed method has two key features.First,a cross-view image registration process is introduced,including a projective transformation and a two-stage multi-sensor registration.This process utilizes both gradient information and phase information of cross-view images.This allows the registration process to reach a good balance between matching precision and computational efficiency.By matching the airborne camera view to the preloaded digital map,the geolocation accuracy can reach the accuracy level of the digital map for any ground target appearing in the airborne camera view.Second,the proposed method uses the registration results to perform an iteration process,which compensates for the bias of the strap-down initial navigation module online.Although it is challenging to provide cross-view registration results with high frequency,such an iteration process allows the method to generate real-time,highly accurate location results.The effectiveness of the proposed IGCIR method is verified by a series of flying-test experiments.The results show that the location accuracy of the method can reach 4.18 m(at 10 km standoff distance).展开更多
This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detect...This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed.展开更多
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ...Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.展开更多
In this paper, we propose a fast registration scheme for remote-sensing images for use as a fundamental technique in large-scale online remote-sensing data processing tasks. First, we introduce priori-information imag...In this paper, we propose a fast registration scheme for remote-sensing images for use as a fundamental technique in large-scale online remote-sensing data processing tasks. First, we introduce priori-information images,and use machine learning techniques to identify robust remote-sensing image features from state-of-the-art ScaleInvariant Feature Transform(SIFT) features. Next, we apply a hierarchical coarse-to-fine feature matching and image registration scheme on the basis of additional priori information, including a robust feature location map and platform imaging parameters. Numerical simulation results show that the proposed scheme increases position repetitiveness by 34%, and can speed up the overall image registration procedure by a factor of 7:47 while maintaining the accuracy of the image registration performance.展开更多
As a branch of digital image processing, image registration technology has gradually become the basic key technology of image understanding and deep processing of computer vision after decades of development. In recen...As a branch of digital image processing, image registration technology has gradually become the basic key technology of image understanding and deep processing of computer vision after decades of development. In recent years, image mosaic technology has been widely used in medical image processing, computer vision, remote sensing image processing, virtual reality technology and other fields. Therefore, based on the optimized ORB algorithm, the author studies the precise registration technology of remote sensing images. The use of ORB algorithm for remote sensing image registration can effectively remove mismatch points and achieve accurate matching, thus achieving correct splicing. Moreover, the problem caused by the registration difference is greatly overcome to the registration.展开更多
Reference control points (RCPs) used in establishing the regression model in the regis-tration or geometric correction of remote sensing images are generally assumed to be “perfect”. That is, the RCPs, as explanator...Reference control points (RCPs) used in establishing the regression model in the regis-tration or geometric correction of remote sensing images are generally assumed to be “perfect”. That is, the RCPs, as explanatory variables in the regression equation, are accurate and the coordinates of their locations have no errors. Thus ordinary least squares (OLS) estimator has been applied exten-sively to the registration or geometric correction of remotely sensed data. However, this assumption is often invalid in practice because RCPs always contain errors. Moreover, the errors are actually one of the main sources which lower the accuracy of geometric correction of an uncorrected image. Under this situation, the OLS estimator is biased. It cannot handle explanatory variables with errors and cannot propagate appropriately errors from the RCPs to the corrected image. Therefore, it is essential to develop new feasible methods to overcome such a problem. This paper introduces a consistent adjusted least squares (CALS) estimator and proposes relaxed consistent adjusted least squares (RCALS) estimator, with the latter being more general and flexible, for geometric correction or regis-tration. These estimators have good capability in correcting errors contained in the RCPs, and in propagating appropriately errors of the RCPs to the corrected image with and without prior information. The objective of the CALS and proposed RCALS estimators is to improve the accuracy of measure-ment value by weakening the measurement errors. The conceptual arguments are substantiated by a real remotely sensed data. Compared to the OLS estimator, the CALS and RCALS estimators give a superior overall performance in estimating the regression coefficients and variance of measurement errors.展开更多
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金supported by National Nature Science Foundation of China(Nos.61640412 and 61762052)the Natural Science Foundation of Jiangxi Province(No.20192BAB207021)the Science and Technology Research Projects of Jiangxi Province Education Department(Nos.GJJ170633 and GJJ170632).
文摘Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images.To solve this problem,this paper proposes a novel approach with regard to feature-based remote sensing image registration.There are two key contributions:1)we bring forward an improved strategy of composite nonlinear diffusion filtering according to the scale factors in multi-scale space and 2)we design a gradually decreasing resolution of multi-scale pyramid space.And a binary code string is served as feature descriptors to improve matching efficiency.Extensive experiments of different categories of remote image datasets on feature extraction and feature registration are performed.The experimental results demonstrate the superiority of our proposed scheme compared with other classical algorithms in terms of correct matching ratio,accuracy and computation efficiency.
基金National Natural Science Foundation of China(Nos.61702392 and 61772393)Key Research and Development Program of Shaanxi Province(Nos.2018ZDXM-GY-045 and 2019JQ-189).
文摘In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many methods based on evolutionary computation and deep learning have achieved good performance in remote sensing image registration.This paper introduces the application of computational intelligence in remote sensing image registration from the two directions of evolutionary computing and deep learning.In the part of remote sensing image registration based on evolutionary calculation,the principles of evolutionary algorithms and swarm intelligence algorithms are elaborated and their application in remote sensing image registration is discussed.The application of deep learning in remote sensing image registration is also discussed.At the same time,the development status and future of remote sensing image registration are summarized and their prospects are examined.
基金Under the auspices of the National Key Research and Development Program of China(No.2023YFC3208500)Shanghai Municipal Natural Science Foundation(No.22ZR1421500)+3 种基金National Natural Science Foundation of China(No.U2243207)National Science and Technology Basic Resources Survey Project(No.2023FY01001)Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF202406)Project from Science and Technology Commission of Shanghai Municipality(No.22DZ1202700)。
文摘Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.
基金supported by the National Level Project of China(No.52-L0D01-0613-20/22)。
文摘The geolocation of ground targets by airborne image sensors is an important task for unmanned aerial vehicles or surveillance aircraft.This paper proposes an Iterative Geolocation based on Cross-view Image Registration(IGCIR)that can provide real-time target location results with high precision.The proposed method has two key features.First,a cross-view image registration process is introduced,including a projective transformation and a two-stage multi-sensor registration.This process utilizes both gradient information and phase information of cross-view images.This allows the registration process to reach a good balance between matching precision and computational efficiency.By matching the airborne camera view to the preloaded digital map,the geolocation accuracy can reach the accuracy level of the digital map for any ground target appearing in the airborne camera view.Second,the proposed method uses the registration results to perform an iteration process,which compensates for the bias of the strap-down initial navigation module online.Although it is challenging to provide cross-view registration results with high frequency,such an iteration process allows the method to generate real-time,highly accurate location results.The effectiveness of the proposed IGCIR method is verified by a series of flying-test experiments.The results show that the location accuracy of the method can reach 4.18 m(at 10 km standoff distance).
文摘This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed.
基金Meteorological Research in the Public Interest,No.GYHY201106014Beijing Nova Program,No.2010B037China Special Fund for the National High Technology Research and Development Program of China(863 Program),No.412230
文摘Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.
基金supported by the National Key Basic Research and Development (973) Program of China (No. 2013CB329006)the National Natural Science Foundation of China (Nos. 61471220 and 61021001)
文摘In this paper, we propose a fast registration scheme for remote-sensing images for use as a fundamental technique in large-scale online remote-sensing data processing tasks. First, we introduce priori-information images,and use machine learning techniques to identify robust remote-sensing image features from state-of-the-art ScaleInvariant Feature Transform(SIFT) features. Next, we apply a hierarchical coarse-to-fine feature matching and image registration scheme on the basis of additional priori information, including a robust feature location map and platform imaging parameters. Numerical simulation results show that the proposed scheme increases position repetitiveness by 34%, and can speed up the overall image registration procedure by a factor of 7:47 while maintaining the accuracy of the image registration performance.
文摘As a branch of digital image processing, image registration technology has gradually become the basic key technology of image understanding and deep processing of computer vision after decades of development. In recent years, image mosaic technology has been widely used in medical image processing, computer vision, remote sensing image processing, virtual reality technology and other fields. Therefore, based on the optimized ORB algorithm, the author studies the precise registration technology of remote sensing images. The use of ORB algorithm for remote sensing image registration can effectively remove mismatch points and achieve accurate matching, thus achieving correct splicing. Moreover, the problem caused by the registration difference is greatly overcome to the registration.
基金This work was supported in part by the National'973'Program(Grant No.2006CB701305)the National Natural Science Foundation of China(Grant No.40201033)the Knowledge Innovation Project of the Chinese Academy of Sciences(V36400).
文摘Reference control points (RCPs) used in establishing the regression model in the regis-tration or geometric correction of remote sensing images are generally assumed to be “perfect”. That is, the RCPs, as explanatory variables in the regression equation, are accurate and the coordinates of their locations have no errors. Thus ordinary least squares (OLS) estimator has been applied exten-sively to the registration or geometric correction of remotely sensed data. However, this assumption is often invalid in practice because RCPs always contain errors. Moreover, the errors are actually one of the main sources which lower the accuracy of geometric correction of an uncorrected image. Under this situation, the OLS estimator is biased. It cannot handle explanatory variables with errors and cannot propagate appropriately errors from the RCPs to the corrected image. Therefore, it is essential to develop new feasible methods to overcome such a problem. This paper introduces a consistent adjusted least squares (CALS) estimator and proposes relaxed consistent adjusted least squares (RCALS) estimator, with the latter being more general and flexible, for geometric correction or regis-tration. These estimators have good capability in correcting errors contained in the RCPs, and in propagating appropriately errors of the RCPs to the corrected image with and without prior information. The objective of the CALS and proposed RCALS estimators is to improve the accuracy of measure-ment value by weakening the measurement errors. The conceptual arguments are substantiated by a real remotely sensed data. Compared to the OLS estimator, the CALS and RCALS estimators give a superior overall performance in estimating the regression coefficients and variance of measurement errors.