期刊文献+
共找到268篇文章
< 1 2 14 >
每页显示 20 50 100
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
1
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix multi-source remote sensing image registration CONTOURLET transform
原文传递
Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images 被引量:3
2
作者 Chenzhong Gao Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期113-124,共12页
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi... This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability. 展开更多
关键词 image registration multi-source remote sensing SCALE-SPACE Harris corner partial intensity invariant feature descriptor(PIIFD)
在线阅读 下载PDF
Accuracy Analysis on the Automatic Registration of Multi-Source Remote Sensing Images Based on the Software of ERDAS Imagine 被引量:1
3
作者 Debao Yuan Ximin Cui +2 位作者 Yahui Qiu Xueyun Gu Li Zhang 《Advances in Remote Sensing》 2013年第2期140-148,共9页
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ... The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed. 展开更多
关键词 multi-source remote sensing images Automatic registration image Autosync registration ACCURACY
在线阅读 下载PDF
Remote Sensing Image Registration Based on Improved KAZE and BRIEF Descriptor 被引量:5
4
作者 Huan Liu Gen-Fu Xiao 《International Journal of Automation and computing》 EI CSCD 2020年第4期588-598,共11页
Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images.To solve this problem,this paper proposes a novel approach with r... Remote sensing image registration is still a challenging task owing to the significant influence of nonlinear differences between remote sensing images.To solve this problem,this paper proposes a novel approach with regard to feature-based remote sensing image registration.There are two key contributions:1)we bring forward an improved strategy of composite nonlinear diffusion filtering according to the scale factors in multi-scale space and 2)we design a gradually decreasing resolution of multi-scale pyramid space.And a binary code string is served as feature descriptors to improve matching efficiency.Extensive experiments of different categories of remote image datasets on feature extraction and feature registration are performed.The experimental results demonstrate the superiority of our proposed scheme compared with other classical algorithms in terms of correct matching ratio,accuracy and computation efficiency. 展开更多
关键词 remote sensing image image registration composite nonlinear diffusion filter binary code string multi-scale pyramid space
原文传递
Computational Intelligence in Remote Sensing Image Registration:A survey 被引量:2
5
作者 Yue Wu Jun-Wei Liu +4 位作者 Chen-Zhuo Zhu Zhuang-Fei Bai Qi-Guang Miao Wen-Ping Ma Mao-Guo Gong 《International Journal of Automation and computing》 EI CSCD 2021年第1期1-17,共17页
In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many met... In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many methods based on evolutionary computation and deep learning have achieved good performance in remote sensing image registration.This paper introduces the application of computational intelligence in remote sensing image registration from the two directions of evolutionary computing and deep learning.In the part of remote sensing image registration based on evolutionary calculation,the principles of evolutionary algorithms and swarm intelligence algorithms are elaborated and their application in remote sensing image registration is discussed.The application of deep learning in remote sensing image registration is also discussed.At the same time,the development status and future of remote sensing image registration are summarized and their prospects are examined. 展开更多
关键词 Computational intelligence evolutionary computation neural network deep learning remote sensing image registration
原文传递
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
6
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
Iterative geolocation based on cross-view image registration(IGCIR)for long-range targets
7
作者 Fangchao ZHAI Qinghua ZENG +1 位作者 Jie LI Ziqi JIN 《Chinese Journal of Aeronautics》 2025年第7期479-492,共14页
The geolocation of ground targets by airborne image sensors is an important task for unmanned aerial vehicles or surveillance aircraft.This paper proposes an Iterative Geolocation based on Cross-view Image Registratio... The geolocation of ground targets by airborne image sensors is an important task for unmanned aerial vehicles or surveillance aircraft.This paper proposes an Iterative Geolocation based on Cross-view Image Registration(IGCIR)that can provide real-time target location results with high precision.The proposed method has two key features.First,a cross-view image registration process is introduced,including a projective transformation and a two-stage multi-sensor registration.This process utilizes both gradient information and phase information of cross-view images.This allows the registration process to reach a good balance between matching precision and computational efficiency.By matching the airborne camera view to the preloaded digital map,the geolocation accuracy can reach the accuracy level of the digital map for any ground target appearing in the airborne camera view.Second,the proposed method uses the registration results to perform an iteration process,which compensates for the bias of the strap-down initial navigation module online.Although it is challenging to provide cross-view registration results with high frequency,such an iteration process allows the method to generate real-time,highly accurate location results.The effectiveness of the proposed IGCIR method is verified by a series of flying-test experiments.The results show that the location accuracy of the method can reach 4.18 m(at 10 km standoff distance). 展开更多
关键词 Aviation remote sensing Bias estimation Cross-view image registration Digital map GEOLOCATION
原文传递
A Summary of Change Detection Technology of Remotely-Sensed Image
8
作者 Zhou Shilun 《无线互联科技》 2013年第5期83-84,88,共3页
This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detect... This paper will describe three aspects of change detection technology of remotely-sensed images. At first, the process of change detection is presented. Then, the author makes a summary of several common change detection methods and a brief review of the advantages and disadvantages of them. At the end of this paper, the applications and difficulty of current change detection techniques are discussed. 展开更多
关键词 互联网 无线网 网络技术 科技创新
在线阅读 下载PDF
Generation of daily snow depth from multi-source satellite images and in situ observations
9
作者 CAO Guangzhen HOU Peng +1 位作者 ZHENG Zhaojun TANG Shihao 《Journal of Geographical Sciences》 SCIE CSCD 2015年第10期1235-1246,共12页
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ... Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method. 展开更多
关键词 data fusion daily snow depth multi-source satellite images passive microwave remote sensing IMS in situ observations
原文传递
Fast Remote-Sensing Image Registration Using Priori Information and Robust Feature Extraction 被引量:5
10
作者 Xijia Liu Xiaoming Tao Ning Ge 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第5期552-560,共9页
In this paper, we propose a fast registration scheme for remote-sensing images for use as a fundamental technique in large-scale online remote-sensing data processing tasks. First, we introduce priori-information imag... In this paper, we propose a fast registration scheme for remote-sensing images for use as a fundamental technique in large-scale online remote-sensing data processing tasks. First, we introduce priori-information images,and use machine learning techniques to identify robust remote-sensing image features from state-of-the-art ScaleInvariant Feature Transform(SIFT) features. Next, we apply a hierarchical coarse-to-fine feature matching and image registration scheme on the basis of additional priori information, including a robust feature location map and platform imaging parameters. Numerical simulation results show that the proposed scheme increases position repetitiveness by 34%, and can speed up the overall image registration procedure by a factor of 7:47 while maintaining the accuracy of the image registration performance. 展开更多
关键词 remote sensing image registration priori information feature extraction
原文传递
Accurate Registration of Remote Sensing Images Based on Optimized ORB Algorithms
11
作者 Shufen Wang 《计算机科学与技术汇刊(中英文版)》 2019年第1期57-60,共4页
As a branch of digital image processing, image registration technology has gradually become the basic key technology of image understanding and deep processing of computer vision after decades of development. In recen... As a branch of digital image processing, image registration technology has gradually become the basic key technology of image understanding and deep processing of computer vision after decades of development. In recent years, image mosaic technology has been widely used in medical image processing, computer vision, remote sensing image processing, virtual reality technology and other fields. Therefore, based on the optimized ORB algorithm, the author studies the precise registration technology of remote sensing images. The use of ORB algorithm for remote sensing image registration can effectively remove mismatch points and achieve accurate matching, thus achieving correct splicing. Moreover, the problem caused by the registration difference is greatly overcome to the registration. 展开更多
关键词 Optimized ORB Algorithm remote sensing image PRECISE registration Technique
在线阅读 下载PDF
Modelling for registration of remotely sensed imagery when reference control points contain error 被引量:2
12
作者 Leung Yee 《Science China Earth Sciences》 SCIE EI CAS 2006年第7期739-746,共8页
Reference control points (RCPs) used in establishing the regression model in the regis-tration or geometric correction of remote sensing images are generally assumed to be “perfect”. That is, the RCPs, as explanator... Reference control points (RCPs) used in establishing the regression model in the regis-tration or geometric correction of remote sensing images are generally assumed to be “perfect”. That is, the RCPs, as explanatory variables in the regression equation, are accurate and the coordinates of their locations have no errors. Thus ordinary least squares (OLS) estimator has been applied exten-sively to the registration or geometric correction of remotely sensed data. However, this assumption is often invalid in practice because RCPs always contain errors. Moreover, the errors are actually one of the main sources which lower the accuracy of geometric correction of an uncorrected image. Under this situation, the OLS estimator is biased. It cannot handle explanatory variables with errors and cannot propagate appropriately errors from the RCPs to the corrected image. Therefore, it is essential to develop new feasible methods to overcome such a problem. This paper introduces a consistent adjusted least squares (CALS) estimator and proposes relaxed consistent adjusted least squares (RCALS) estimator, with the latter being more general and flexible, for geometric correction or regis-tration. These estimators have good capability in correcting errors contained in the RCPs, and in propagating appropriately errors of the RCPs to the corrected image with and without prior information. The objective of the CALS and proposed RCALS estimators is to improve the accuracy of measure-ment value by weakening the measurement errors. The conceptual arguments are substantiated by a real remotely sensed data. Compared to the OLS estimator, the CALS and RCALS estimators give a superior overall performance in estimating the regression coefficients and variance of measurement errors. 展开更多
关键词 ERROR modelling registration ordinary least squares relaxed CONSISTENT adjusted least squares remote sensing images.
原文传递
基于ERDAS IMAGINE的遥感图像更新地形图 被引量:1
13
作者 周园 关卫军 佟胤铮 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第3期376-378,共3页
为了探索利用遥感图像快速更新矢量地形图的方法,在深入研究了ERDAS IMAGINE矢量模块功能的基础上,利用试验区遥感图像和现有矢量地形图,将二者进行了高精度的配准,并以栅格图像为参照,对矢量图层的空间数据进行了更新,总结了利用ERDAS ... 为了探索利用遥感图像快速更新矢量地形图的方法,在深入研究了ERDAS IMAGINE矢量模块功能的基础上,利用试验区遥感图像和现有矢量地形图,将二者进行了高精度的配准,并以栅格图像为参照,对矢量图层的空间数据进行了更新,总结了利用ERDAS IMAGINE矢量模块结合遥感影像进行矢量图形更新的经验与方法。结果表明:与传统的地形图更新方法相比,该方法在更新中小比例尺地形图方面具有更新效率高、更新成本小等突出优势,充分体现了RS与GIS的集成应用。该成果对地理信息系统数据库建设与快速更新具有一定的参考价值。 展开更多
关键词 ERDAS imagINE 矢量模块 遥感影像 配准 地形图更新
在线阅读 下载PDF
ERDAS IMAGINE在地形图更新中的应用
14
作者 张慧慧 《辽宁省交通高等专科学校学报》 2008年第5期10-12,共3页
本文在深入研究ERDAS IMAGINE模块功能的基础上,从实用化的角度出发,将矢量图层与高精度的最新遥感图像进行配准,然后以栅格图像为参照,对矢量图层的空间数据进行了更新,总结出了利用ERDAS I-MAGINE矢量模块结合遥感影像进行矢量图形更... 本文在深入研究ERDAS IMAGINE模块功能的基础上,从实用化的角度出发,将矢量图层与高精度的最新遥感图像进行配准,然后以栅格图像为参照,对矢量图层的空间数据进行了更新,总结出了利用ERDAS I-MAGINE矢量模块结合遥感影像进行矢量图形更新的经验与方法。 展开更多
关键词 ERDAS imagINE 矢量模块 遥感影像 矢量图形 配准 地形图更新
在线阅读 下载PDF
基于深度学习的高分辨率夜光与光学遥感影像配准
15
作者 孙鹏韬 李建荣 +1 位作者 王志乾 于树海 《液晶与显示》 北大核心 2025年第10期1509-1519,共11页
作为异源遥感影像,高分辨率夜光与光学遥感影像差异巨大,无法基于传统影像配准算法实现自动配准,目前基本依赖人工利用ArcGIS手动刺点的方式进行配准。因此,本文提出了一种基于深度学习的高分辨率夜光与光学遥感影像自动配准框架。首先... 作为异源遥感影像,高分辨率夜光与光学遥感影像差异巨大,无法基于传统影像配准算法实现自动配准,目前基本依赖人工利用ArcGIS手动刺点的方式进行配准。因此,本文提出了一种基于深度学习的高分辨率夜光与光学遥感影像自动配准框架。首先,提取夜光和光学遥感影像二值化路网并降采样,采用绝对误差和(SAD)算法对夜光和光学遥感影像进行粗匹配。其次,利用YOLOv8目标检测模型提取夜光与光学遥感影像路网交叉口中心点作为控制点,通过欧氏距离和随机采样一致性(RANSAC)算法匹配和筛选同名控制点。最后,采用最小二乘法求解仿射变换矩阵,实现高分辨率夜光与光学遥感影像的精配准。利用吉林一号0.92 m分辨率的夜光遥感影像和0.75 m分辨率的光学遥感影像验证了所提方法的有效性。实验结果表明,所提方法可实现高分辨率夜光与光学遥感影像的自动配准,成都市和长春市建成区测试数据配准后的均方根误差(RMSE)分别为3.29 m和3.36 m,具有较高的配准精度。 展开更多
关键词 夜光遥感影像 光学遥感影像 深度学习 路网 自动配准
在线阅读 下载PDF
机载多孔径全景图像合成技术研究进展 被引量:5
16
作者 吴付杰 王博文 +6 位作者 齐静雅 曹铭智 桑英俊 李晟 张玉珍 陈钱 左超 《航空学报》 北大核心 2025年第3期1-24,共24页
机载多孔径全景图像合成技术通过对多个子孔径或传感器的图像拼接合成,实现广域高分辨、高空间带宽图像重建,在国防安全、农林领域、数字监控等多个关键领域发挥着重要作用。介绍了机载多孔径全景图像合成技术的发展背景,阐述全景图像... 机载多孔径全景图像合成技术通过对多个子孔径或传感器的图像拼接合成,实现广域高分辨、高空间带宽图像重建,在国防安全、农林领域、数字监控等多个关键领域发挥着重要作用。介绍了机载多孔径全景图像合成技术的发展背景,阐述全景图像合成的基本概念和步骤,对其核心部分图像配准技术和图像融合技术的分类和发展脉络进行梳理,同时总结了目前主流方法的特点和局限性。最后对目前机载多孔径全景图像合成技术的发展现状进行归纳总结,揭示了当前机载多孔径全景图像合成技术存在的瓶颈问题,此外展望了未来的研究方向以及解决这些问题可能的技术途径,为相关领域的技术进步和应用拓展提供了有益的启示。 展开更多
关键词 全景图像合成 图像配准 图像融合 多孔径探测 无人机遥感
原文传递
融合注意力与多尺度特征的遥感图像配准 被引量:3
17
作者 倪力政 陈颖 +2 位作者 李翔 邓修涵 马腾 《计算机工程与应用》 北大核心 2025年第3期275-285,共11页
针对遥感图像地理信息复杂多变、局部细节与上下文信息难以被充分提取,以及部分配准模型精度较低、用时较长等问题,提出了一种融合注意力与多阶尺度特征的配准模型,在特征提取阶段引入Transformer与逆残差结构结合的轻量级卷积网络,通... 针对遥感图像地理信息复杂多变、局部细节与上下文信息难以被充分提取,以及部分配准模型精度较低、用时较长等问题,提出了一种融合注意力与多阶尺度特征的配准模型,在特征提取阶段引入Transformer与逆残差结构结合的轻量级卷积网络,通过嵌入混合注意力块加深对通道空间信息的关注,进一步地,为了更有效地捕获上下文特征信息,使用增强注意力的多尺度扩张卷积模块进行深层次过滤提取,以获取更精细和丰富的特征语义图。在匹配阶段采用互相关最优加权的双向匹配方法,计算密集对应关系得到双向参数,并通过参数回归网络加权合成最终变换参数,仿射变换完成图像配准。实验结果表明,关键点正确估计的比例系数为0.03、0.05和0.1的情况下,在三个数据集上的配准精度达到61.9%、86.2%、93.6%,而平均配准时间仅为1.05 s,证明了该模型有效提升遥感图像配准的精度和效率。 展开更多
关键词 遥感图像配准 上下文特征 增强注意力 双向匹配
在线阅读 下载PDF
基于多尺度相位一致特征的遥感图像配准方法研究
18
作者 许思源 郭苹 +1 位作者 潘哲 唐世阳 《空军工程大学学报》 北大核心 2025年第5期54-61,共8页
由于不同类型的传感器辐射机理不同,多模态遥感图像之间具有显著的图源差异和几何畸变。针对合成孔径雷达(SAR)图像中的非线性辐射问题,相位一致性方法展现出较强的鲁棒性,然而这种方法在处理图像间的尺度变化时显得较为敏感。为了实现... 由于不同类型的传感器辐射机理不同,多模态遥感图像之间具有显著的图源差异和几何畸变。针对合成孔径雷达(SAR)图像中的非线性辐射问题,相位一致性方法展现出较强的鲁棒性,然而这种方法在处理图像间的尺度变化时显得较为敏感。为了实现多尺度可见光与SAR遥感图像的配准,提出了一种基于多尺度相位一致特征的配准方法。首先利用高斯函数构建多尺度空间,在不同尺度层上对图像进行相位一致性检测,提取特征点。采用多尺度融合算法,融合具有多尺度特征的相位一致特征点图。然后在极坐标系下基于Log-Gabor滤波器的最大幅值响应和方向索引构造描述符进行配准。最后利用最近邻比和快速抽样一致性识别正确匹配。实验结果表明,该算法针对多尺度可见光与SAR图像配准方面具有显著优势,提高了配准精度。 展开更多
关键词 多模态遥感图像 图像配准 特征提取 相位一致性 多尺度
在线阅读 下载PDF
面向高分辨率多视角SAR图像的端到端配准算法 被引量:1
19
作者 孙晓坤 贠泽楷 +1 位作者 胡粲彬 项德良 《雷达学报(中英文)》 北大核心 2025年第2期389-404,共16页
由于侧视和相干成像机制,当高分辨率合成孔径雷达(SAR)图像的成像视角变化较大时,图像间的特征差异会变大,使图像配准难度增加。针对高分辨率多视角SAR图像,传统的配准技术主要面临提取的关键点定位精度不足和匹配精度低的问题。基于上... 由于侧视和相干成像机制,当高分辨率合成孔径雷达(SAR)图像的成像视角变化较大时,图像间的特征差异会变大,使图像配准难度增加。针对高分辨率多视角SAR图像,传统的配准技术主要面临提取的关键点定位精度不足和匹配精度低的问题。基于上述难点,该文设计了一种端到端的高分辨率多视角SAR图像配准网络。文章主要贡献包括:提出基于局部像素偏移模型的高分辨率SAR图像特征提取方法,该方法提出多样性峰值损失监督训练关键点提取网络中响应权重分配部分,并通过检测像素偏移量来优化关键点坐标;提出基于自适应调整卷积核采样位置的描述符提取方法,利用稀疏交叉熵损失监督训练网络中描述符匹配。实验结果显示,相比于其他配准方法,该文提出的算法针对高分辨率多视角SAR图像配准效果显著,平均误差降低超过65%,正确匹配点对数提高了3~5倍,运行时间平均缩短50%以上。 展开更多
关键词 合成孔径雷达 遥感图像配准 特征描述符提取 旋转鲁棒性 像素偏移量
在线阅读 下载PDF
激光雷达与遥感图像融合在城市三维建模中的应用研究 被引量:1
20
作者 李建军 普巴 《自动化应用》 2025年第4期229-231,235,共4页
随着城市化进程的加快,对高精度城市三维模型的需求日益增加,传统建模技术已难以满足高效且精准的城市规划与管理要求。为应对这一挑战,探讨了激光雷达与遥感图像融合技术在城市三维建模中的应用。通过深入分析激光雷达和遥感技术的基... 随着城市化进程的加快,对高精度城市三维模型的需求日益增加,传统建模技术已难以满足高效且精准的城市规划与管理要求。为应对这一挑战,探讨了激光雷达与遥感图像融合技术在城市三维建模中的应用。通过深入分析激光雷达和遥感技术的基本原理及其优势,进一步研究了数据预处理、配准和特征级融合技术,展示了如何有效地结合这两种技术,以提高城市模型的精度和实用性。研究旨在通过先进的融合算法优化城市模型,从而支持更精准的城市规划和管理决策。 展开更多
关键词 激光雷达 遥感图像 配准 融合技术
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部