An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric featur...Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.展开更多
In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multipl...In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multiple layers of Transformer blocks,which achieves considerable improvement in capturing variations,but at a rather high computational cost.We propose a channel-Efficient Change Detection Network(CE-CDNet)to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.The adaptive multi-scale feature fusion module(CAMSF)and lightweight Transformer decoder(LTD)are introduced to improve the change detection effect.The CAMSF module can adaptively fuse multi-scale features to improve the model’s ability to detect building changes in complex scenes.In addition,the LTD module reduces computational costs and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction operation.Experimental test results on three commonly used remote sensing building change detection data sets show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy comparable to existing mainstream models,showing good performance advantages.展开更多
The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack...The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability.展开更多
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech...Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great...The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.展开更多
This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based regi...This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a...The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.展开更多
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR...[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.展开更多
Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales.This study aimed to construct a remote sensing ...Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales.This study aimed to construct a remote sensing assessment index for urban ecological livability with continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the dilemma of single image-based,single-factor analysis,due to the limitations of atmospheric conditions or the revisit period of satellite platforms.The proposed Ecological Livability Index(ELI)covers five primary ecological indicators-greenness,temperature,dryness,waterwetness,and atmospheric turbidity-which are geometrically aggregated by non-equal weights based on an entropy method.Considering multisource time-series data of each indicator,the ELl can quickly and comprehensively reflect the characteristics of the Ecological Livability Quality(ELQ)and is also comparable at different time scales.Based on the proposed ELl,the urban ecological livability in the central urban area of Wuhan,China,from 2002 to 2017,in the different seasons was analyzed every 5 years.The ELQ of Wuhan was found to be generally at the medium level(ELl=0.6)and showed an initial trend of degradation but then improved.Moreover,the ecological livability in spring and autumn and near rivers and lakes was found to be better,whereas urban expansion has led to the outward ecological degradation of Wuhan,but urban afforestation has enhanced the environment.In general,this paper demonstrates that the ELI has an exemplary embodiment in urban ecological research,which will support urban ecological protection planning and construction.展开更多
In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up t...In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up to date iufbimation on changes soas toevaluate their environmental effects. The major purpose of this study was to develop a new method tofuse lower spatial resolution multispectral satellite images with higher spatial resolutionpanchromatic ones to assist in land use/cover mapping.An algorithm of a new fusion method known asedge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets ofdifferent spectral ranges. The results showed that the EEIM image was quite similar in color tolower resolution multispectral images, and the fused product was better able to preserve spectralinformation. Thus, compared to conventional approaches, the spectral distortion of the fused imageswas markedly reduced. Therefore, the EEIM fusion method could be utilized to fuse remote sensingdata from the same or different sensors, including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.展开更多
Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial...Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial resolution. Many image fusion techniques have been developed to produce high resolution multispectral image. Considering panchromatic image and multispectral images contain the same spatial information with different accuracy, using the least square theory could estimate optimal spatial information. Compared with previous spatial details injection mode, this mode is more accurate and robust. In this paper, an image fusion method using Bidimensional Empirical Mode Decomposition (BEMD) and the least square theory is proposed to merge multispectral images and panchromatic image. After multi-spectral images were transformed from RGB space into IHS space, next I component and Panchromatic are decomposed by BEMD, then using the least squares theory to evaluate optimal spatial information and inject spatial information, finally completing fusion through inverse BEMD and inverse intensity-hue-saturation transform. Two data sets are used to evaluate the proposed fusion method, GF-1 images and QuickBird-2 images. The fusion images were evaluated visually and statistically. The evaluation results show the method proposed in this paper achieves the best performance compared with the conventional method.展开更多
To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. Th...To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. The output of multiple BPNN model is fused by the CFI. Meanwhile, to resolve the over-fitting problem caused by a small number of training sets, we design an algorithm that fully considers neighbor sampling information. A classification experiment of the Chl-a concentration of the Taihu Lake is conducted. The result shows that, the proposed approach is superior to the classification using a single neural network classifier, and the CFI fusion method has higher identification accuracy.展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its ...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS,PCA,Brovey,OWT(Orthogonal Wavelet Transform)and RWT(Redundant Wavelet Transform).The results show that the new method can keep almost the same spatial resolution as the panchromatic images,and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud...IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.展开更多
The purpose of remote sensing images fusion is to produce a fused image that contains more clear,accurate and comprehensive information than any single image.A novel fusion method is proposed in this paper based on no...The purpose of remote sensing images fusion is to produce a fused image that contains more clear,accurate and comprehensive information than any single image.A novel fusion method is proposed in this paper based on nonsubsampled contourlet transform(NSCT) and region segmentation.Firstly,the multispectral image is transformed to intensity-hue-saturation(IHS) system.Secondly,the panchromatic image and the component intensity of the multispectral image are decomposed by NSCT.Then the NSCT coefficients of high and low frequency subbands are fused by different rules,respectively.For the high frequency subbands,the fusion rules are also unalike in the smooth and edge regions.The two regions are segregated in the panchromatic image,and the segmentation is based on particle swarm optimization.Finally,the fusion image can be obtained by performing inverse NSCT and inverse IHS transform.The experimental results are evaluated by both subjective and objective criteria.It is shown that the proposed method can obtain superior results to others.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金financially supported by the Youth Innovation Promotion Association CAS(No.2021325)the National Natural Science Foundation of China(Nos.52179117,U21A20159)the Research project of Panzhihua Iron and Steel Group Mining Co.,Ltd.(No.2021-P6-D2-05)。
文摘Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.
基金supported by Henan Province Key R&D Project(241111210400)Henan Provincial Science and Technology Research Project(242102211007 and 242102211020)+1 种基金Jiangsu Science and Technology Programme-General Programme(BK20221260)Science and Technology Innovation Project of Zhengzhou University of Light Industry(23XNKJTD0205).
文摘In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multiple layers of Transformer blocks,which achieves considerable improvement in capturing variations,but at a rather high computational cost.We propose a channel-Efficient Change Detection Network(CE-CDNet)to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.The adaptive multi-scale feature fusion module(CAMSF)and lightweight Transformer decoder(LTD)are introduced to improve the change detection effect.The CAMSF module can adaptively fuse multi-scale features to improve the model’s ability to detect building changes in complex scenes.In addition,the LTD module reduces computational costs and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction operation.Experimental test results on three commonly used remote sensing building change detection data sets show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy comparable to existing mainstream models,showing good performance advantages.
基金supported by National Natural Science Foundation of China(No.52374155)Anhui Provincial Natural Science Foundation(No.2308085 MF218).
文摘The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability.
基金Under the auspices of the National Key Research and Development Program of China(No.2023YFC3208500)Shanghai Municipal Natural Science Foundation(No.22ZR1421500)+3 种基金National Natural Science Foundation of China(No.U2243207)National Science and Technology Basic Resources Survey Project(No.2023FY01001)Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF202406)Project from Science and Technology Commission of Shanghai Municipality(No.22DZ1202700)。
文摘Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金This work was supported by the National Advance Research Program(Item No.Y1601-1).
文摘The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.
文摘This paper aims at providing multi-source remote sensing images registered in geometric space for image fusion.Focusing on the characteristics and differences of multi-source remote sensing images,a feature-based registration algorithm is implemented.The key technologies include image scale-space for implementing multi-scale properties,Harris corner detection for keypoints extraction,and partial intensity invariant feature descriptor(PIIFD)for keypoints description.Eventually,a multi-scale Harris-PIIFD image registration algorithm framework is proposed.The experimental results of fifteen sets of representative real data show that the algorithm has excellent,stable performance in multi-source remote sensing image registration,and can achieve accurate spatial alignment,which has strong practical application value and certain generalization ability.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金Projects(41171326,40771198)supported by the National Natural Science Foundation of ChinaProject(08JJ6023)supported by the Natural Science Foundation of Hunan Province,China
文摘The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.
基金Supported by Science and Technology Project of Lianyungang City(SH0917)
文摘[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.
基金supported by the National Natural Science Foundation of China[grant number 41701394]National Key Research and Development Program of China[grant number 2018YFB2100500].
文摘Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales.This study aimed to construct a remote sensing assessment index for urban ecological livability with continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the dilemma of single image-based,single-factor analysis,due to the limitations of atmospheric conditions or the revisit period of satellite platforms.The proposed Ecological Livability Index(ELI)covers five primary ecological indicators-greenness,temperature,dryness,waterwetness,and atmospheric turbidity-which are geometrically aggregated by non-equal weights based on an entropy method.Considering multisource time-series data of each indicator,the ELl can quickly and comprehensively reflect the characteristics of the Ecological Livability Quality(ELQ)and is also comparable at different time scales.Based on the proposed ELl,the urban ecological livability in the central urban area of Wuhan,China,from 2002 to 2017,in the different seasons was analyzed every 5 years.The ELQ of Wuhan was found to be generally at the medium level(ELl=0.6)and showed an initial trend of degradation but then improved.Moreover,the ecological livability in spring and autumn and near rivers and lakes was found to be better,whereas urban expansion has led to the outward ecological degradation of Wuhan,but urban afforestation has enhanced the environment.In general,this paper demonstrates that the ELI has an exemplary embodiment in urban ecological research,which will support urban ecological protection planning and construction.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-427), the National Key Basic Research Support Foundation of China (NKBRSF) (No. 2002CB410810) and the China Scholarship Council (No. 2003836044).
文摘In China, accelerating industrialization and urbanization followinghigh-speed economic development and population increases have greatly impacted land use/coverchanges, making it imperative to obtain accurate and up to date iufbimation on changes soas toevaluate their environmental effects. The major purpose of this study was to develop a new method tofuse lower spatial resolution multispectral satellite images with higher spatial resolutionpanchromatic ones to assist in land use/cover mapping.An algorithm of a new fusion method known asedge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets ofdifferent spectral ranges. The results showed that the EEIM image was quite similar in color tolower resolution multispectral images, and the fused product was better able to preserve spectralinformation. Thus, compared to conventional approaches, the spectral distortion of the fused imageswas markedly reduced. Therefore, the EEIM fusion method could be utilized to fuse remote sensingdata from the same or different sensors, including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.
文摘Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial resolution. Many image fusion techniques have been developed to produce high resolution multispectral image. Considering panchromatic image and multispectral images contain the same spatial information with different accuracy, using the least square theory could estimate optimal spatial information. Compared with previous spatial details injection mode, this mode is more accurate and robust. In this paper, an image fusion method using Bidimensional Empirical Mode Decomposition (BEMD) and the least square theory is proposed to merge multispectral images and panchromatic image. After multi-spectral images were transformed from RGB space into IHS space, next I component and Panchromatic are decomposed by BEMD, then using the least squares theory to evaluate optimal spatial information and inject spatial information, finally completing fusion through inverse BEMD and inverse intensity-hue-saturation transform. Two data sets are used to evaluate the proposed fusion method, GF-1 images and QuickBird-2 images. The fusion images were evaluated visually and statistically. The evaluation results show the method proposed in this paper achieves the best performance compared with the conventional method.
文摘To improve the monitoring precision of lake chlorophyll a (Chl-a), this paper presents a fusion method based on Choquet Fuzzy Integral (CFI) to estimate the Chl-a concentration. A group of BPNN models are designed. The output of multiple BPNN model is fused by the CFI. Meanwhile, to resolve the over-fitting problem caused by a small number of training sets, we design an algorithm that fully considers neighbor sampling information. A classification experiment of the Chl-a concentration of the Taihu Lake is conducted. The result shows that, the proposed approach is superior to the classification using a single neural network classifier, and the CFI fusion method has higher identification accuracy.
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS,PCA,Brovey,OWT(Orthogonal Wavelet Transform)and RWT(Redundant Wavelet Transform).The results show that the new method can keep almost the same spatial resolution as the panchromatic images,and the spectral effect of the new method is as good as those of wavelet-based methods.
基金Supported by the High Technology Research and Development Programme of China (2001AA135091) and the National Natural Science Foundation of China (60375008).
文摘IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.
基金the National Natural Science Foundation of China (No.60872065)
文摘The purpose of remote sensing images fusion is to produce a fused image that contains more clear,accurate and comprehensive information than any single image.A novel fusion method is proposed in this paper based on nonsubsampled contourlet transform(NSCT) and region segmentation.Firstly,the multispectral image is transformed to intensity-hue-saturation(IHS) system.Secondly,the panchromatic image and the component intensity of the multispectral image are decomposed by NSCT.Then the NSCT coefficients of high and low frequency subbands are fused by different rules,respectively.For the high frequency subbands,the fusion rules are also unalike in the smooth and edge regions.The two regions are segregated in the panchromatic image,and the segmentation is based on particle swarm optimization.Finally,the fusion image can be obtained by performing inverse NSCT and inverse IHS transform.The experimental results are evaluated by both subjective and objective criteria.It is shown that the proposed method can obtain superior results to others.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.