期刊文献+
共找到1,446篇文章
< 1 2 73 >
每页显示 20 50 100
Seismic random noise suppression using an adaptive nonlocal means algorithm 被引量:10
1
作者 尚帅 韩立国 +1 位作者 吕庆田 谭尘青 《Applied Geophysics》 SCIE CSCD 2013年第1期33-40,117,118,共10页
Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o... Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation. 展开更多
关键词 seismic prospecting ADAPTIVE nonlocal means random noise attenuation
在线阅读 下载PDF
Seismic dip estimation based on the twodimensional Hilbert transform and its application in random noise attenuation 被引量:8
2
作者 刘财 陈常乐 +3 位作者 王典 刘洋 王世煜 张亮 《Applied Geophysics》 SCIE CSCD 2015年第1期55-63,121,共10页
In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th... In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information. 展开更多
关键词 Two-dimensional Hilbert transform random noise attenuation structure protection nonstationary polynomial fitting local seismic d
在线阅读 下载PDF
An iterative curvelet thresholding algorithm for seismic random noise attenuation 被引量:9
3
作者 王德利 仝中飞 +1 位作者 唐晨 朱恒 《Applied Geophysics》 SCIE CSCD 2010年第4期315-324,399,共11页
In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demons... In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR. 展开更多
关键词 curvelet transform iterative thresholding random noise attenuation
在线阅读 下载PDF
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7
4
作者 马彦彦 李国发 +2 位作者 王钧 周辉 张保江 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ... The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. 展开更多
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation
在线阅读 下载PDF
Improved random noise attenuation using f-x empirical mode decomposition and local similarity 被引量:6
5
作者 甘叔玮 王守东 +3 位作者 陈阳康 陈江龙 钟巍 张成林 《Applied Geophysics》 SCIE CSCD 2016年第1期127-134,220,共9页
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the... Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method. 展开更多
关键词 random noise attenuation f-x empirical mode decomposition local similarity dipping event
在线阅读 下载PDF
RANDOM ATTRACTOR FOR A TWO-DIMENSIONAL INCOMPRESSIBLE NON-NEWTONIAN FLUID WITH MULTIPLICATIVE NOISE 被引量:5
6
作者 赵才地 李用声 周盛凡 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期567-575,共9页
This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing an... This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space. 展开更多
关键词 random attractor multiplicative noise non-Newtonian fluid
在线阅读 下载PDF
Estimation of random errors for lidar based on noise scale factor 被引量:2
7
作者 王欢雪 刘建国 张天舒 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期386-390,共5页
Estimation of random errors, which are due to shot noise of photomultiplier tube(PMT) or avalanche photodiode(APD) detectors, is very necessary in lidar observation. Due to the Poisson distribution of incident electro... Estimation of random errors, which are due to shot noise of photomultiplier tube(PMT) or avalanche photodiode(APD) detectors, is very necessary in lidar observation. Due to the Poisson distribution of incident electrons, there still exists a proportional relationship between standard deviation and square root of its mean value. Based on this relationship,noise scale factor(NSF) is introduced into the estimation, which only needs a single data sample. This method overcomes the distractions of atmospheric fluctuations during calculation of random errors. The results show that this method is feasible and reliable. 展开更多
关键词 atmospheric optics LIDAR random error noise factor noise scale factor
原文传递
Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances 被引量:4
8
作者 Chun-Biao Gan Chang-Tao Ding Shi-Xi Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期983-994,共12页
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.Th... During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg. 展开更多
关键词 Biped robot multi-source random disturbances Sensitive parameters RBF neural network Taguchi method Performance evaluation
在线阅读 下载PDF
Random noise suppression for seismic data using a non-local Bayes algorithm 被引量:4
9
作者 Chang De-Kuan Yang Wu-Yang +3 位作者 Wang Yi-Hui Yang Qing Wei Xin-Jian and Feng Xiao-Ying 《Applied Geophysics》 SCIE CSCD 2018年第1期91-98,149,共9页
For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in th... For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data. 展开更多
关键词 Non-local Bayes random noise suppression BLOCK-MATCHING Gaussian model
在线阅读 下载PDF
Inversion-based data-driven time-space domain random noise attenuation method 被引量:4
10
作者 Zhao Yu-Min Li Guo-Fa +3 位作者 Wang Wei Zhou Zhen-Xiao Tang Bo-Wen Zhang Wen-Bo 《Applied Geophysics》 SCIE CSCD 2017年第4期543-550,621,622,共10页
Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, whe... Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data's space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance. 展开更多
关键词 random noise attenuation prediction filtering seismic data inversion regularization constraint
在线阅读 下载PDF
REGULARITY OF RANDOM ATTRACTORS FOR A STOCHASTIC DEGENERATE PARABOLIC EQUATIONS DRIVEN BY MULTIPLICATIVE NOISE 被引量:1
11
作者 赵文强 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期409-427,共19页
We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) an... We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established. 展开更多
关键词 random dynamical systems stochastic degenerate parabolic equation multiplicative noise random attractors Wiener process
在线阅读 下载PDF
Suppression of seismic random noise by deep learning combined with stationary wavelet packet transform 被引量:1
12
作者 Fan Hua Wang Dong-Bo +2 位作者 Zhang Yang Wang Wen-Xu Li Tao 《Applied Geophysics》 SCIE CSCD 2024年第4期740-751,880,共13页
Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis too... Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis tool.Compared with the stationary wavelet transform,it can suppress high-frequency noise while preserving more edge details.Deep learning has significantly progressed in denoising applications.DnCNN,a residual network;FFDNet,an efficient,fl exible network;U-NET,a codec network;and GAN,a generative adversative network,have better denoising effects than BM3D,the most popular conventional denoising method.Therefore,SWP_hFFDNet,a random noise attenuation network based on the stationary wavelet packet transform(SWPT)and modified FFDNet,is proposed.This network combines the advantages of SWPT,Huber norm,and FFDNet.In addition,it has three characteristics:First,SWPT is an eff ective featureextraction tool that can obtain low-and high-frequency features of different scales and frequency bands.Second,because the noise level map is the input of the network,the noise removal performance of diff erent noise levels can be improved.Third,the Huber norm can reduce the sensitivity of the network to abnormal data and enhance its robustness.The network is trained using the Adam algorithm and the BSD500 dataset,which is augmented,noised,and decomposed by SWPT.Experimental and actual data processing results show that the denoising eff ect of the proposed method is almost the same as those of BM3D,DnCNN,and FFDNet networks for low noise.However,for high noise,the proposed method is superior to the aforementioned networks. 展开更多
关键词 random noise stationary wavelet packet transform deep learning noise level map Huber norm
在线阅读 下载PDF
Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution 被引量:2
13
作者 张钰 逯鑫淼 +2 位作者 王光义 胡永才 徐江涛 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期164-170,共7页
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t... The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. 展开更多
关键词 random telegraph signal noise physical and statistical model binomial distribution CMOS image sensor
原文传递
Random Attractor Family for the Kirchhoff Equation of Higher Order with White Noise 被引量:1
14
作者 Guoguang Lin Zhuoxi Li 《Advances in Pure Mathematics》 2019年第4期404-414,共11页
The existence of random attractor family for a class of nonlinear high-order Kirchhoff equation stochastic dynamical systems with white noise is studied. The Ornstein-Uhlenbeck process and the weak solution of the equ... The existence of random attractor family for a class of nonlinear high-order Kirchhoff equation stochastic dynamical systems with white noise is studied. The Ornstein-Uhlenbeck process and the weak solution of the equation are used to deal with the stochastic terms. The equation is transformed into a general stochastic equation. The bounded stochastic absorption set is obtained by estimating the solution of the equation and the existence of the random attractor family is obtained by isomorphic mapping method. Temper random compact sets of random attractor family are obtained. 展开更多
关键词 Stochastic Dynamical System White noise random ATTRACTOR FAMILY WIENER PROCESS ORNSTEIN-UHLENBECK PROCESS
在线阅读 下载PDF
Improving the Autoregressive Modeling Method in Random Noise Suppression of GPR Data Using Undecimated Discrete Wavelet Transform 被引量:1
15
作者 Behrooz Oskooi Amin Ebrahimi Bardar Alireza Goodarzi 《Journal of Signal and Information Processing》 2018年第1期24-35,共12页
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi... Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband. 展开更多
关键词 Ground PENETRATING Radar random noise Undecimated Discrete WAVELET Transform AUTOREGRESSIVE Filter
在线阅读 下载PDF
Towards Post-Quantum Cryptography Using Thermal Noise Theory and True Random Numbers Generation 被引量:1
16
作者 Protais Ndagijimana Fulgence Nahayo +2 位作者 Marc Kokou Assogba Adoté François-Xavier Ametepe Juma Shabani 《Journal of Information Security》 2020年第3期149-160,共12页
The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the br... The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm<sup>3</sup>. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography. 展开更多
关键词 Thermal noise True random Numbers ALGORITHM Post-Quantum Cryptography
暂未订购
A Random Attractor Family of the High Order Beam Equations with White Noise 被引量:1
17
作者 Guoguang Lin Jie Liu 《International Journal of Modern Nonlinear Theory and Application》 2020年第3期51-61,共11页
In this paper, we studied a class of damped high order Beam equation stochas-tic dynamical systems with white noise. First, the Ornstein-Uhlenbeck process is used to transform the equation into a noiseless random equa... In this paper, we studied a class of damped high order Beam equation stochas-tic dynamical systems with white noise. First, the Ornstein-Uhlenbeck process is used to transform the equation into a noiseless random equation with random variables as parameters. Secondly, by estimating the solution of the equation, we can obtain the bounded random absorption set. Finally, the isomorphism mapping method and compact embedding theorem are used to obtain the system. It is progressively compact, then we can prove the existence of ran-dom attractors. 展开更多
关键词 Beam Type Equation random Attractor White noise
在线阅读 下载PDF
H^2-regularity random attractors of stochastic non-Newtonian fluids with multiplicative noise
18
作者 郭春晓 郭柏灵 杨慧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第1期105-116,共12页
In this paper, the authors study the long time behavior of solutions to stochastic non-Newtonian fluids in a two-dimensional bounded domain, and prove the existence of H2-regularity random attractor.
关键词 random attractor non-Newtonian fluid multiplicative noise Stratonovichprocess
在线阅读 下载PDF
Random telegraph noise on the threshold voltage of multi-level flash memory
19
作者 Yiming Liao Xiaoli Ji +3 位作者 Yue Xu Chengxu Zhang Qiang Guo Feng Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期547-551,共5页
We investigate the impact of random telegraph noise(RTN) on the threshold voltage of multi-level NOR flash memory.It is found that the threshold voltage variation(?Vth) and the distribution due to RTN increase wi... We investigate the impact of random telegraph noise(RTN) on the threshold voltage of multi-level NOR flash memory.It is found that the threshold voltage variation(?Vth) and the distribution due to RTN increase with the programmed level(Vth) of flash cells. The gate voltage dependence of RTN amplitude and the variability of RTN time constants suggest that the large RTN amplitude and distribution at the high program level is attributed to the charge trapping in the tunneling oxide layer induced by the high programming voltages. A three-dimensional TCAD simulation based on a percolation path model further reveals the contribution of those trapped charges to the threshold voltage variation and distribution in flash memory. 展开更多
关键词 random telegraph noise NOR flash memory percolation path oxide charges
原文传递
Random noise stimulation in the treatment of patients with neurological disorders
20
作者 Mateo A.Herrera-Murillo Mario Treviño Elias Manjarrez 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2557-2562,共6页
Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,m... Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,motor,or cognitive functions.Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli,but electrical energies applied to the brain or the skin are becoming more frequent,with a series of clinical applications.Indeed,recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability,improve cognitive/motor performance,and produce beneficial aftereffects at the behavioral and psychological levels.Here,we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders,including attention deficit hyperactivity disorder,schizophrenia,amblyopia,myopia,tinnitus,multiple sclerosis,post-stroke,vestibular-postural disorders,and sensitivity loss.Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects.In addition,we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions. 展开更多
关键词 auditory noise mechanical noise neurological disorders neuronal noise noise galvanic vestibular stimulation non-invasive brain stimulation transcranial electrical stimulation transcranial random noise stimulation
暂未订购
上一页 1 2 73 下一页 到第
使用帮助 返回顶部