期刊文献+
共找到14,666篇文章
< 1 2 250 >
每页显示 20 50 100
From Static and Dynamic Perspectives:A Survey on Historical Data Benchmarks of Control Performance Monitoring 被引量:1
1
作者 Pengyu Song Jie Wang +1 位作者 Chunhui Zhao Biao Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期300-316,共17页
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be... In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research. 展开更多
关键词 Control performance monitoring(CPM) datadriven method historical data benchmark(HIS) industrial process performance index static and dynamic analysis.
在线阅读 下载PDF
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
2
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 Structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
A spatiotemporal recurrent neural network for missing data imputation in tunnel monitoring
3
作者 Junchen Ye Yuhao Mao +3 位作者 Ke Cheng Xuyan Tan Bowen Du Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4815-4826,共12页
Given the swift proliferation of structural health monitoring(SHM)technology within tunnel engineering,there is a demand on proficiently and precisely imputing the missing monitoring data to uphold the precision of di... Given the swift proliferation of structural health monitoring(SHM)technology within tunnel engineering,there is a demand on proficiently and precisely imputing the missing monitoring data to uphold the precision of disaster prediction.In contrast to other SHM datasets,the monitoring data specific to tunnel engineering exhibits pronounced spatiotemporal correlations.Nevertheless,most methodologies fail to adequately combine these types of correlations.Hence,the objective of this study is to develop spatiotemporal recurrent neural network(ST-RNN)model,which exploits spatiotemporal information to effectively impute missing data within tunnel monitoring systems.ST-RNN consists of two moduli:a temporal module employing recurrent neural network(RNN)to capture temporal dependencies,and a spatial module employing multilayer perceptron(MLP)to capture spatial correlations.To confirm the efficacy of the model,several commonly utilized methods are chosen as baselines for conducting comparative analyses.Furthermore,parametric validity experiments are conducted to illustrate the efficacy of the parameter selection process.The experimentation is conducted using original raw datasets wherein various degrees of continuous missing data are deliberately introduced.The experimental findings indicate that the ST-RNN model,incorporating both spatiotemporal modules,exhibits superior interpolation performance compared to other baseline methods across varying degrees of missing data.This affirms the reliability of the proposed model. 展开更多
关键词 monitoring TUNNEL Machine learning INTERPOLATION Missing data
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
4
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Assessing the data quality and seismic monitoring capabilities of the Belt and Road GNSS network
5
作者 Yu Li Yinxing Shao +2 位作者 Tan Wang Yuebing Wang Hongbo Shi 《Earthquake Science》 2025年第1期56-66,共11页
The Belt and Road global navigation satellite system(B&R GNSS)network is the first large-scale deployment of Chinese GNSS equipment in a seismic system.Prior to this,there have been few systematic assessments of t... The Belt and Road global navigation satellite system(B&R GNSS)network is the first large-scale deployment of Chinese GNSS equipment in a seismic system.Prior to this,there have been few systematic assessments of the data quality of Chinese GNSS equipment.In this study,data from four representative GNSS sites in different regions of China were analyzed using the G-Nut/Anubis software package.Four main indicators(data integrity rate,data validity ratio,multi-path error,and cycle slip ratio)used to systematically analyze data quality,while evaluating the seismic monitoring capabilities of the network based on earthquake magnitudes estimated from high-frequency GNSS data are evaluated by estimating magnitude based on highfrequency GNSS data.The results indicate that the quality of the data produced by the three types of Chinese receivers used in the network meets the needs of earthquake monitoring and the new seismic industry standards,which provide a reference for the selection of equipment for future new projects.After the B&R GNSS network was established,the seismic monitoring capability for earthquakes with magnitudes greater than M_(W)6.5 in most parts of the Sichuan-Yunnan region improved by approximately 20%.In key areas such as the Sichuan-Yunnan Rhomboid Block,the monitoring capability increased by more than 25%,which has greatly improved the effectiveness of regional comprehensive earthquake management. 展开更多
关键词 Belt and Road multi-system GNSS data quality seismic monitoring capability
在线阅读 下载PDF
Innovative Research on the Integration of Big Data Technology in Poverty Recurrence Monitoring and Agricultural Product Sales Systems
6
作者 Yuxin Jiang Tingting Li Xinyi Liu 《Journal of Electronic Research and Application》 2025年第2期268-273,共6页
With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty r... With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation. 展开更多
关键词 Big data technology Poverty recurrence monitoring Agricultural product sales Intelligent early warning Rural revitalization
在线阅读 下载PDF
Application Strategies of Artificial Intelligence and Big Data Technology in Computer Monitoring and Control
7
作者 Yumin Yuan Xiyuan Li 《Journal of Electronic Research and Application》 2025年第2期29-34,共6页
This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introdu... This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems. 展开更多
关键词 Computer monitoring and control Artificial intelligence technology Big data technology Hardware and software Network security
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
8
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
9
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring data fusion Terrestrial laser scanning(TLS) Unmanned aerial vehicle(UAV) Model reconstruction
在线阅读 下载PDF
Application of a multi-monitoring system and its temperature correction
10
作者 LIU Songyuan YANG Peixi +1 位作者 HE ManChao TAO Zhigang 《Journal of Mountain Science》 2025年第2期681-694,共14页
The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollut... The Dazu Rock Carvings in Chongqing were inscribed on the World Heritage List in 1999.In recent years,the Dazu Rock Carvings have faced environmental challenges such as geological forces,increased precipitation,pollution and tourism,which have led to rock deterioration and structural instability.The multi-source monitoring system for the protection of the rock carvings,based on the Internet of Things,includes Global Navigation Satellite System(GNSS)displacement monitoring,static level displacement monitoring,laser rangefinder displacement monitoring,roof pressure sensor monitoring and environmental damage monitoring.This paper analyses data from each sub-monitoring system within the multi-source monitoring system applied to Yuanjue Cave in the Dazu Rock Carvings.Initially,a correlation analysis between climate monitoring data and roof displacement data was carried out to assess the effect of temperature.Based on the results of the analysis,a temperature correction equation for the laser rangefinder was derived to improve the laser rangefinder displacement monitoring system.The improved system was then used to monitor Cave 168,revealing the deformation and erosion patterns of the roof.The research results demonstrate that the multiparameter monitoring system is capable of accurately measuring and analyzing the stability of the Dazu stone carvings,as well as the effects of environmental conditions on them.The use of the Internet of Things(IoT)and real-time data collection to monitor rock deformation and environmental conditions is an innovative application of technology in cultural heritage conservation.Interpretation of the monitoring system and statistical correlation analysis of temperature and laser rangefinder data highlight the thoroughness of the methodology in this paper and its relevance to sustainable mountain development.In the future,multi-source monitoring systems will have a broader application in the conservation of other UNESCO World Heritage Sites. 展开更多
关键词 multi-source monitoring System data Fitting Dazu Rock Carvings Rock Cave Protection
原文传递
A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model 被引量:1
11
作者 Yan-tao Zhu Chong-shi Gu Mihai A.Diaconeasa 《Water Science and Engineering》 CSCD 2024年第4期417-424,共8页
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument... Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management. 展开更多
关键词 Missing data recovery Concrete dam Deformation monitoring Spatiotemporal clustering Support vector machine model
在线阅读 下载PDF
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
12
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Problems and Countermeasures in the Quality Monitoring of Online Teaching in Colleges and Universities
13
作者 Shengyu Chen Zhen Zhao Huanpeng Tang 《Journal of Contemporary Educational Research》 2025年第8期205-212,共8页
The rapid development of online education has posed brand-new challenges to the teaching quality monitoring system in colleges and universities.This paper systematically explores the three major characteristics of onl... The rapid development of online education has posed brand-new challenges to the teaching quality monitoring system in colleges and universities.This paper systematically explores the three major characteristics of online teaching quality monitoring in colleges and universities:the complexity of monitoring brought by the separation of time and space,the enhanced accuracy based on technology dependence,and the monitoring dimensions expanded by the diversification of interaction.The research reveals the key existing problems at present,including the analytical predicament caused by data fragmentation,the stability crisis triggered by technical failures,and the validity limitations due to the insufficient adaptability of teachers and students.In response to these challenges,this paper proposes systematic solutions such as building a unified data platform,strengthening the technical support system,and conducting targeted training.Through multi-dimensional analysis,this study provides a theoretical framework and practical path for constructing a quality monitoring system that ADAPTS to the characteristics of online education,and has important reference value for improving the quality of online teaching in colleges and universities. 展开更多
关键词 Online education Quality monitoring data integration Technical support Teacher training
在线阅读 下载PDF
Designing and optimizing an intelligent self-powered condition monitoring system for mining belt conveyor idlers and its application
14
作者 Xuanbo JIAO Zhixia WANG +2 位作者 Wei WANG F.S.GU S.HEYNS 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1679-1698,共20页
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas... Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction. 展开更多
关键词 intelligent safety monitoring SELF-POWERED magnetic modulation data driven model mining conveyor
在线阅读 下载PDF
UAV-Assisted LoRa-Based Wireless Sensor Network for Environmental Monitoring
15
作者 Muhammad Aamir Khan Zain Anwar Ali Rana Javed Masood 《Instrumentation》 2025年第2期91-100,共10页
Unmanned Aerial Vehicles(UAVs)integrated with Wireless Sensor Networks(WSNs)present a transformative approach to environmental monitoring by enabling real-time,low power,wide-area,and high-resolution data collection.T... Unmanned Aerial Vehicles(UAVs)integrated with Wireless Sensor Networks(WSNs)present a transformative approach to environmental monitoring by enabling real-time,low power,wide-area,and high-resolution data collection.This paper proposes a UAV-based WSN framework designed for efficient ecological data acquisition,including parameters such as temperature,humidity,various gases,detection of motion of a material,and safety features.The system leverages UAVs for dynamic deployment and data retrieval from distributed sensor nodes in remote or inaccessible areas,reducing the reliance on fixed infrastructure.Long Range Communication(LoRa)technology is also integrated with a WSN to enhance network coverage and adaptability issues.The proposed system covers vast areas through LoRa communication ensuring minimal energy consumption and cost-effective sensing capabilities.Field tests and simulation findings show how well the system captures spatiotemporal environmental fluctuations,making it an invaluable tool for monitoring climate change,ecological research,and disaster response. 展开更多
关键词 wireless sensor network unmanned aerial vehicle long range communication low power consumption environmental data monitoring
原文传递
Characterizing strength and location of continental oil shale with drilling process monitoring in Southern Ordos Basin, China
16
作者 Siyuan Wu Lihui Li +1 位作者 Xiao Li Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3339-3357,共19页
The increasing demand for unconventional oil and gas resources,especially oil shale,has highlighted the urgent need to develop rapid and accurate strata characterization methods.This paper is the first case and examin... The increasing demand for unconventional oil and gas resources,especially oil shale,has highlighted the urgent need to develop rapid and accurate strata characterization methods.This paper is the first case and examines the drilling process monitoring(DPM)method as a digital,accurate,cost-effective method to characterize oil shale reservoirs in the Ordos Basin,China.The digital DPM method provides real-time in situ testing of the relative variation in rock mechanical strength along the drill bit depth.Furthermore,it can give a refined rock quality designation based on the DPM zoning result(RQD(V_(DPM)))and a strength-grade characterization at the site.Oil shale has high heterogeneity and low strata strength.The digital results are further compared and verified with manual logging,cored samples,and digital panoramic borehole cameras.The findings highlight the innovative potential of the DPM method in identifying the zones of oil shale reservoir along the drill bit depth.The digital results provide a better understanding of the oil shale in Tongchuan and the potential for future oil shale exploration in other regions. 展开更多
关键词 Continental oil shale Drilling process monitoring(DPM) Digital factual drilling data Constant penetration rate FRACTURE Time series algorithm
在线阅读 下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
17
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
在线阅读 下载PDF
Contribution of the MERISE-Type Conceptual Data Model to the Construction of Monitoring and Evaluation Indicators of the Effectiveness of Training in Relation to the Needs of the Labor Market in the Republic of Congo
18
作者 Roch Corneille Ngoubou Basile Guy Richard Bossoto Régis Babindamana 《Open Journal of Applied Sciences》 2024年第8期2187-2200,共14页
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct... This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation. 展开更多
关键词 MERISE Conceptual data Model (MCD) monitoring Indicators Evaluation of Training Effectiveness Training-Employment Adequacy Labor Market Information Systems Analysis Adjustment of Training Programs EMPLOYABILITY Professional Skills
在线阅读 下载PDF
Review of large scale crop remote sensing monitoring based on MODIS data 被引量:1
19
作者 刘丹 杨风暴 +2 位作者 李大威 梁若飞 冯裴裴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期193-204,共12页
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap... China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary. 展开更多
关键词 moderate-resolution imaging spectroradiometer(MODIS)data remote sensing monitoring CROPS
在线阅读 下载PDF
Separation method for multi-source blended seismic data
20
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部