Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recogniz...Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.展开更多
There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote t...There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote the exploration and development of the CBM resources of the Xishanyao Formation in this area,we studied previous coalfield survey data and CBM geological exploration data.Then,we analyzed the relationships between the gas content and methane concentration vs.coal seam thickness,burial depth,coal reservoir physical characteristics,hydrogeological conditions,and roof and floor lithology.In addition,we briefly discuss the main factors influencing CBM accumulation.First,we found that the coal strata of the Xishanyao Formation in the study area are relatively simple in structure,and the coal seam has a large thickness and burial depth,as well as moderately good roof and floor conditions.The hydrogeological conditions and coal reservoir physical characteristics are also conducive to the enrichment and a high yield of CBM.We believe that the preservation of CBM resources in the study area is mainly controlled by the structure,burial depth,and hydrogeological conditions.Furthermore,on the basis of the above results,the coal seam of the Xishanyao Formation in the synclinal shaft and buried at depths of 700-1000 m should be the first considered for development.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ...Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.展开更多
Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presente...Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.展开更多
In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed...In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.展开更多
The behavior and controlling factors of natural gas adsorption in the Jurassic continental shale in the northeastern Sichuan Basin are studied based on the organic geochemical features,mineral compositions and pore st...The behavior and controlling factors of natural gas adsorption in the Jurassic continental shale in the northeastern Sichuan Basin are studied based on the organic geochemical features,mineral compositions and pore structure parameters through a series of experiments on samples from the shale.Results show that the total gas content of the shale measured on-site is 0.1-5.3 cm^(3)/g,with an average of 0.7 cm^(3)/g.The methane isothermal adsorption curves show a trend of increasing first and then decreasing,indicating an obvious excessive adsorption.The shale has a maximum adsorption capacity(V^(L))of 0.44-3.59 cm^(3)/g,with an average of 1.64 cm^(3)/g,lower than that of marine shale in the same basin.The organic matter content and pore structure characteristics are identified as the two main factors controlling the adsorption capacity of the shale.Micropores in the shale are the main storage space for gas to be adsorbed.Due to well developed shell laminae and interlayers in the shale,calcite plays a more important role than clay minerals in affecting the adsorption of gas to the rock.The formation temperature and water content also significantly inhibit the gas adsorption to the shale.Compared with marine shale in the basin,the Jurassic continental shale is more heterogeneous and lower in TOC values.Furthermore,with a more widely developed clayey shale lithofacies and shell limy shale lithofacies as well as relatively less developed organic pores and micropores,the continental shale is inferior to marine shale in terms of gas adsorption capacity.展开更多
The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation syst...The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.展开更多
Gas is always accompanied by mining activities, which has both static and dynamic characteristics. In recent years, the gas disaster has been effectively controlled and the situation of safety production has been impr...Gas is always accompanied by mining activities, which has both static and dynamic characteristics. In recent years, the gas disaster has been effectively controlled and the situation of safety production has been improved day by day. Only by determining good gas disaster control technology, can gas accidents be prevented in advance. We must conscientiously implement the gas control policy of "drainage before mining, monitoring and monitoring, and determining production by wind", pay close attention to the implementation of various measures, strengthen the management of ventilation, gas prevention, coal dust prevention and firefighting, and consolidate and expand the achievements of gas control.展开更多
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern C...The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir.展开更多
Work face 3312 of coal mining in a colliery was taken as an example in which methane data in a series of locations was analyzed.For the purpose of data analysis, work face 3312 was divided into sections with 20 powere...Work face 3312 of coal mining in a colliery was taken as an example in which methane data in a series of locations was analyzed.For the purpose of data analysis, work face 3312 was divided into sections with 20 powered supports and some measur- ing-points in a section.Through analysis based on the sectional control volume model,the following points are concluded: (1) the location of gob air flow begins flow into coal face in 70 m away from the haulage gallery;(2) in the control volumes No.10 and No.30,the ra- tios of methane intensity from coal face into gob to the methane intensity in the corre- sponding control volume are 30% and 22%;(3) in the control volume No.50 to No.110,the ratios of methane intensity from gob into coal face to the methane intensity in the corre- sponding control volume are 4%,17%,22% and 53%,respectively.展开更多
There are abundant high-rank coal bed methane(CBM)resources in China,accounting for one third of total CBM resources.Its efficient development and utilization is of great significance to guarantee the national energy ...There are abundant high-rank coal bed methane(CBM)resources in China,accounting for one third of total CBM resources.Its efficient development and utilization is of great significance to guarantee the national energy strategic security,diminish the hidden danger of coal mine production and reduce carbon dioxide emission.In order to solve the"four lows"problem(i.e.,low effective utilization ratio of proved reserves,low productivity targeting ratio,low single-well production rate and low development profit)restricting the development of high-rank CBM industry in China,this paper deeply analyzes the core problems restricting the development of high-rank CBM.Based on this,several new methods of production control,area selection and evaluation are put forward by taking multiple measures,such as paying the same attention on theoretical research and technological research&development,carrying out laboratory research and field test in parallel and conducting large scale construction and benefit development simultaneously.And the following research results are obtained.First,the geological difference between CBM and coal mine,the difference in reserves recoverability,the adaptability of engineering technology and the scientificity of production are the main factors restricting CBM development effect.Second,"Four-element"production control theory,methane-leading en gineering transformation method and methane-leading production control theory are proposed,which provides guidance for the development of a series of technologies for the efficient development of high-rank CBM.Third,in practice,the control degree of quality reserves is increased from 32%to 80%,the success ratio of development wells is increased from 60%to 95%,the average single-well daily gas production of vertical wells is increased by about 1100 m^(3),the drilling cost of horizontal wells is reduced by 50%,and the operation cost per cubic meter of gas is reduced by 24%.In conclusion,the established technology series for the efficient development of high-rank CBM actively promote the efficient CBMdevelopment in the Qinshui Basin.The yearly CBM production of PetroChina Huabei Oilfield Company is expected to reach 20108 m^(3) in the middle of the"14th Five-Year Plan",which promotes the strategic development of CBM industry in China.展开更多
All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such dis...All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The proce- dure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of imped- ance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
Magnetization roasting technology is one of the most representative ways to improve the magnetic separation efficiency and iron recovery of refractory weakly magnetic iron ores.However,utilization of CO-rich or H_(2)-...Magnetization roasting technology is one of the most representative ways to improve the magnetic separation efficiency and iron recovery of refractory weakly magnetic iron ores.However,utilization of CO-rich or H_(2)-rich gas of strong reducibility as reducing agent for magnetization roasting would lead to over-reduction of Fe_(2)O_(3) in the ore to non-magnetic FeO,which makes the magnetism of the roasted ore be lower than its maximum,and hence leads to a lower iron recovery than expected.To explore the possibility of using CH_(4) as reducing agent for controllable reduction of Fe_(2)O_(3) in iron ores to selectively forming magnetic Fe_(3)O_(4),i.e.,for maximizing the magnetism of the reduced ore for efficient iron separation and recovery,a series of fluidized bed reduction tests in CH_(4) were carried out on two iron ores of 55%and 33%iron at different temperatures for different periods of time,and the resultant reduced ore particles were magnetically separated for recovery of iron concentrate.XRD and ICP analyses were performed on all recovered iron concentrates to identify the crystal forms of their iron species and to quantify their iron contents.The results have shown that the controllable reduction by CH_(4) of Fe_(2)O_(3) in the iron ores to strongly magnetic Fe_(3)O_(4) can be realized by controlling the reduction temperature and time condition applied.The resultant concentrates can be fully recovered by magnetic separation in a weak magnetic field of 60 kA/m to attain a maximum iron recovery of 98% for the high-grade ore and that of 65% for the low-grade ore.Besides,the results have also shown that the most critical factor affecting the controllability of the ore reduction process and the selectivity to the generation of magnetic Fe_(3)O_(4)-containing particles is the reduction temperature,and that the upper temperature threshold for the controllable reduction and selective generation of strongly magnetic iron concentrate is about 650℃.展开更多
This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multipl...This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.展开更多
Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The...Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The raceway of tuyere provides the chemical environment,fuel and power source for blast furnace smelting.The research on the characteristics of its action mode and mechanism is of great significance to clarify the way of reducing carbon and consumption of blast furnace.In general,the formation mechanism,energy distribution,research progress,extended resource injection and directional regulation are studied and expounded.The research results of various scholars on the characteristics of the raceway show that the raceway is a complex process including multiphase turbulent flow,heat,momentum,mass and homogeneous and heterogeneous chemical reactions.With the development of multi-source fuel injection technology,the complexity of problem research is more obvious.Therefore,the collection of multi-factor,multi-directional and multi-process characteristic information in the raceway can provide guarantee for the stability,smooth operation,high yield,carbon reduction and consumption reduction of blast furnace and provide new ideas for the green and low-carbon development of iron and steel industry.展开更多
Coalbed methane(CBM) resources in No.15 coal seam of Taiyuan Formation account for 55% of the total CBM resources in southern Qinshui Basin(SQB), and have a great production potential. This study aims at investigating...Coalbed methane(CBM) resources in No.15 coal seam of Taiyuan Formation account for 55% of the total CBM resources in southern Qinshui Basin(SQB), and have a great production potential. This study aims at investigating the CBM production in No.15 coal seam and its influence factors. Based on a series of laboratory experiments and latest exploration and development data from local coal mines and CBM companies, the spatial characteristics of gas production of No.15 coal seam were analyzed and then the influences of seven factors on the gas productivity of this coal seam were discussed, including coal thickness, burial depth, gas content, ratio of critical desorption pressure to original coal reservoir pressure(RCPOP), porosity, permeability, and hydrogeological condition. The influences of hydrological condition on CBM production were analyzed based on the discussions of four aspects: hydrogeochemistry, roof lithology and its distribution, hydrodynamic field of groundwater, and recharge rate of groundwater. Finally, a three-level analytic hierarchy process(AHP) evaluation model was proposed for predicting the CBM potentials of the No.15 coal seam in the SQB. The best prospective target area for CBM production of the No.15 coal seam is predicted to be in the districts of Panzhuang, Chengzhuang and south of Hudi.展开更多
基金supported by the National High Technology Research and Development Program of China (863)(grant no.2007AA06Z220)Important Project of the Ministry of Education(grant no.307014)the Huainan Mining Group program
文摘Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.
基金the China Geological Survey Project of Chinese Oil and Gas Strategic Petroleum Prospects Investigation and Evaluation(Grant No.1211302108025—2 and No.DD20160204).
文摘There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote the exploration and development of the CBM resources of the Xishanyao Formation in this area,we studied previous coalfield survey data and CBM geological exploration data.Then,we analyzed the relationships between the gas content and methane concentration vs.coal seam thickness,burial depth,coal reservoir physical characteristics,hydrogeological conditions,and roof and floor lithology.In addition,we briefly discuss the main factors influencing CBM accumulation.First,we found that the coal strata of the Xishanyao Formation in the study area are relatively simple in structure,and the coal seam has a large thickness and burial depth,as well as moderately good roof and floor conditions.The hydrogeological conditions and coal reservoir physical characteristics are also conducive to the enrichment and a high yield of CBM.We believe that the preservation of CBM resources in the study area is mainly controlled by the structure,burial depth,and hydrogeological conditions.Furthermore,on the basis of the above results,the coal seam of the Xishanyao Formation in the synclinal shaft and buried at depths of 700-1000 m should be the first considered for development.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
文摘Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining.
文摘Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out.
文摘In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.
基金This research is financially supported by the National Science and Technology Major Project(2017ZX05036004)the China Petroleum&Chemical Corporation Technology Development Project(G5800-20-ZS-HX042).
文摘The behavior and controlling factors of natural gas adsorption in the Jurassic continental shale in the northeastern Sichuan Basin are studied based on the organic geochemical features,mineral compositions and pore structure parameters through a series of experiments on samples from the shale.Results show that the total gas content of the shale measured on-site is 0.1-5.3 cm^(3)/g,with an average of 0.7 cm^(3)/g.The methane isothermal adsorption curves show a trend of increasing first and then decreasing,indicating an obvious excessive adsorption.The shale has a maximum adsorption capacity(V^(L))of 0.44-3.59 cm^(3)/g,with an average of 1.64 cm^(3)/g,lower than that of marine shale in the same basin.The organic matter content and pore structure characteristics are identified as the two main factors controlling the adsorption capacity of the shale.Micropores in the shale are the main storage space for gas to be adsorbed.Due to well developed shell laminae and interlayers in the shale,calcite plays a more important role than clay minerals in affecting the adsorption of gas to the rock.The formation temperature and water content also significantly inhibit the gas adsorption to the shale.Compared with marine shale in the basin,the Jurassic continental shale is more heterogeneous and lower in TOC values.Furthermore,with a more widely developed clayey shale lithofacies and shell limy shale lithofacies as well as relatively less developed organic pores and micropores,the continental shale is inferior to marine shale in terms of gas adsorption capacity.
文摘The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.
文摘Gas is always accompanied by mining activities, which has both static and dynamic characteristics. In recent years, the gas disaster has been effectively controlled and the situation of safety production has been improved day by day. Only by determining good gas disaster control technology, can gas accidents be prevented in advance. We must conscientiously implement the gas control policy of "drainage before mining, monitoring and monitoring, and determining production by wind", pay close attention to the implementation of various measures, strengthen the management of ventilation, gas prevention, coal dust prevention and firefighting, and consolidate and expand the achievements of gas control.
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
基金This study was supported by the Natural Science Foundation of China (grant No. 40273034)the Science Foundation of Hongzhou Danzi University.
文摘The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir.
文摘Work face 3312 of coal mining in a colliery was taken as an example in which methane data in a series of locations was analyzed.For the purpose of data analysis, work face 3312 was divided into sections with 20 powered supports and some measur- ing-points in a section.Through analysis based on the sectional control volume model,the following points are concluded: (1) the location of gob air flow begins flow into coal face in 70 m away from the haulage gallery;(2) in the control volumes No.10 and No.30,the ra- tios of methane intensity from coal face into gob to the methane intensity in the corre- sponding control volume are 30% and 22%;(3) in the control volume No.50 to No.110,the ratios of methane intensity from gob into coal face to the methane intensity in the corre- sponding control volume are 4%,17%,22% and 53%,respectively.
基金Scientific and Technological Project of China National Petroleum Exploration and Production Corporation"Research on North China Coalbed Methane Reserve Utilization and Beneficial Development Technology"(kt2021-10-07)China National Petroleum North China Technology Project of Oilfield Company"Geological Design Technology of High Coalbed Methane Horizontal Well and Implementation Tracking Research"(2022-HB-M03).
文摘There are abundant high-rank coal bed methane(CBM)resources in China,accounting for one third of total CBM resources.Its efficient development and utilization is of great significance to guarantee the national energy strategic security,diminish the hidden danger of coal mine production and reduce carbon dioxide emission.In order to solve the"four lows"problem(i.e.,low effective utilization ratio of proved reserves,low productivity targeting ratio,low single-well production rate and low development profit)restricting the development of high-rank CBM industry in China,this paper deeply analyzes the core problems restricting the development of high-rank CBM.Based on this,several new methods of production control,area selection and evaluation are put forward by taking multiple measures,such as paying the same attention on theoretical research and technological research&development,carrying out laboratory research and field test in parallel and conducting large scale construction and benefit development simultaneously.And the following research results are obtained.First,the geological difference between CBM and coal mine,the difference in reserves recoverability,the adaptability of engineering technology and the scientificity of production are the main factors restricting CBM development effect.Second,"Four-element"production control theory,methane-leading en gineering transformation method and methane-leading production control theory are proposed,which provides guidance for the development of a series of technologies for the efficient development of high-rank CBM.Third,in practice,the control degree of quality reserves is increased from 32%to 80%,the success ratio of development wells is increased from 60%to 95%,the average single-well daily gas production of vertical wells is increased by about 1100 m^(3),the drilling cost of horizontal wells is reduced by 50%,and the operation cost per cubic meter of gas is reduced by 24%.In conclusion,the established technology series for the efficient development of high-rank CBM actively promote the efficient CBMdevelopment in the Qinshui Basin.The yearly CBM production of PetroChina Huabei Oilfield Company is expected to reach 20108 m^(3) in the middle of the"14th Five-Year Plan",which promotes the strategic development of CBM industry in China.
基金Project 40574057 supported by the National Natural Science Foundation of China and CUMT Youth Foundation
文摘All coal mine disasters are dynamic geological phenomenon and affected by many factors. However, locating the enriched areas of CSM (coal seam methane) may be the precondition for the successful prediction of such disasters. Traditional methods of investigating CSM enriched areas use limited data and only consider a few important factors. Their success rate is low and cannot meet practical needs. In this paper, an alternative method is proposed. The proce- dure is given as follows: 1) fracture attributes derived from azimuth variations of P-wave data in coal seams and wall rocks can be extracted; 2) AVO attributes, such as the intercept P and gradient G parameters can be extracted from different azimuths from 3D seismic data; 3) seismic cubes can be inverted and the relative attributes of imped- ance cubes can be extracted; 4) using a GIS platform, multi-source information can be obtained and analyzed; these include fracture attributes of coal seams and wall rocks, the thickness of coal seams, the distribution of faults and structures, the depth of coal seams, the inclination and exposure of coal seams and the coal rank. Through this processing procedure, methane enriched areas can be systematically detected.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China(U21A20316).
文摘Magnetization roasting technology is one of the most representative ways to improve the magnetic separation efficiency and iron recovery of refractory weakly magnetic iron ores.However,utilization of CO-rich or H_(2)-rich gas of strong reducibility as reducing agent for magnetization roasting would lead to over-reduction of Fe_(2)O_(3) in the ore to non-magnetic FeO,which makes the magnetism of the roasted ore be lower than its maximum,and hence leads to a lower iron recovery than expected.To explore the possibility of using CH_(4) as reducing agent for controllable reduction of Fe_(2)O_(3) in iron ores to selectively forming magnetic Fe_(3)O_(4),i.e.,for maximizing the magnetism of the reduced ore for efficient iron separation and recovery,a series of fluidized bed reduction tests in CH_(4) were carried out on two iron ores of 55%and 33%iron at different temperatures for different periods of time,and the resultant reduced ore particles were magnetically separated for recovery of iron concentrate.XRD and ICP analyses were performed on all recovered iron concentrates to identify the crystal forms of their iron species and to quantify their iron contents.The results have shown that the controllable reduction by CH_(4) of Fe_(2)O_(3) in the iron ores to strongly magnetic Fe_(3)O_(4) can be realized by controlling the reduction temperature and time condition applied.The resultant concentrates can be fully recovered by magnetic separation in a weak magnetic field of 60 kA/m to attain a maximum iron recovery of 98% for the high-grade ore and that of 65% for the low-grade ore.Besides,the results have also shown that the most critical factor affecting the controllability of the ore reduction process and the selectivity to the generation of magnetic Fe_(3)O_(4)-containing particles is the reduction temperature,and that the upper temperature threshold for the controllable reduction and selective generation of strongly magnetic iron concentrate is about 650℃.
文摘This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.
基金financially supported by the Major Science and Technology-Special Plan“Unveiling and Leading”Project of Shanxi Province(No.202201050201011)National Natural Science Foundation of China(No.52274316)+4 种基金China Baowu Low-Carbon Metallurgy Innovation Foundation(No.BWLCF202116)National Key R&D Program of China(No.2022YFE0208100)Major Science and Technology Project of Xinjiang(No.2022A01003)Major Science and Technology Projects of Anhui Province(No.202210700037)Special Funding for Science and Technology of China Minmetals Corporation(No.2021ZXD01).
文摘Under the background of the strategic goal of"double carbon,"the carbon reduction and consumption reduction of the iron and steel industry,especially in the ironmaking process,need to be further improved.The raceway of tuyere provides the chemical environment,fuel and power source for blast furnace smelting.The research on the characteristics of its action mode and mechanism is of great significance to clarify the way of reducing carbon and consumption of blast furnace.In general,the formation mechanism,energy distribution,research progress,extended resource injection and directional regulation are studied and expounded.The research results of various scholars on the characteristics of the raceway show that the raceway is a complex process including multiphase turbulent flow,heat,momentum,mass and homogeneous and heterogeneous chemical reactions.With the development of multi-source fuel injection technology,the complexity of problem research is more obvious.Therefore,the collection of multi-factor,multi-directional and multi-process characteristic information in the raceway can provide guarantee for the stability,smooth operation,high yield,carbon reduction and consumption reduction of blast furnace and provide new ideas for the green and low-carbon development of iron and steel industry.
基金financially supported by the Natural Science Foundation of China (No.41802192)the National Science and Technology Key Special Project of China (No.2016ZX05044-002 and No.2016ZX05043)+2 种基金the Shanxi Provincial Basic Research Program-Coal Bed Methane Joint Research Foundation (No.2012012001 and No.2015012014)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (No.SHJT-17-42.18)the Fundamental Research Funds for the Central Universities (No.CUGL170811)
文摘Coalbed methane(CBM) resources in No.15 coal seam of Taiyuan Formation account for 55% of the total CBM resources in southern Qinshui Basin(SQB), and have a great production potential. This study aims at investigating the CBM production in No.15 coal seam and its influence factors. Based on a series of laboratory experiments and latest exploration and development data from local coal mines and CBM companies, the spatial characteristics of gas production of No.15 coal seam were analyzed and then the influences of seven factors on the gas productivity of this coal seam were discussed, including coal thickness, burial depth, gas content, ratio of critical desorption pressure to original coal reservoir pressure(RCPOP), porosity, permeability, and hydrogeological condition. The influences of hydrological condition on CBM production were analyzed based on the discussions of four aspects: hydrogeochemistry, roof lithology and its distribution, hydrodynamic field of groundwater, and recharge rate of groundwater. Finally, a three-level analytic hierarchy process(AHP) evaluation model was proposed for predicting the CBM potentials of the No.15 coal seam in the SQB. The best prospective target area for CBM production of the No.15 coal seam is predicted to be in the districts of Panzhuang, Chengzhuang and south of Hudi.