期刊文献+
共找到25,788篇文章
< 1 2 250 >
每页显示 20 50 100
Physics-integrated neural networks for improved mineral volumes and porosity estimation from geophysical well logs 被引量:1
1
作者 Prasad Pothana Kegang Ling 《Energy Geoscience》 2025年第2期394-410,共17页
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t... Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications. 展开更多
关键词 Physics integrated neural networks PETROPHYSICS Well logs Oil and gas Reservoir characterization MINERAlogY Machine learning
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
2
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
3
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
Enhancing Environmental Sustainability through Machine Learning:Predicting Drug Solubility(LogS)for Ecotoxicity Assessment and Green Pharmaceutical Design
4
作者 Imane Aitouhanni Amine Berqia +2 位作者 Redouane Kaiss Habiba Bouijij Yassine Mouniane 《Journal of Environmental & Earth Sciences》 2025年第4期82-95,共14页
Pharmaceutical pollution is becoming an increasing threat to aquatic environments since inactive compounds do not break down,and the drug products are accumulated in living organisms.The ability of a drug to dissolve ... Pharmaceutical pollution is becoming an increasing threat to aquatic environments since inactive compounds do not break down,and the drug products are accumulated in living organisms.The ability of a drug to dissolve in water(i.e.,LogS)is an important parameter for assessing a drug’s environmental fate,biovailability,and toxicity.LogS is typically measured in a laboratory setting,which can be costly and time-consuming,and does not provide the opportunity to conduct large-scale analyses.This research develops and evaluates machine learning models that can produce LogS estimates and may improve the environmental risk assessments of toxic pharmaceutical pollutants.We used a dataset from the ChEMBL database that contained 8832 molecular compounds.Various data preprocessing and cleaning techniques were applied(i.e.,removing the missing values),we then recorded chemical properties by normalizing and,even,using some feature selection techniques.We evaluated logS with a total of several machine learning and deep learning models,including;linear regression,random forests(RF),support vector machines(SVM),gradient boosting(GBM),and artificial neural networks(ANNs).We assessed model performance using a series of metrics,including root mean square error(RMSE)and mean absolute error(MAE),as well as the coefficient of determination(R^(2)).The findings show that the Least Angle Regression(LAR)model performed the best with an R^(2) value close to 1.0000,confirming high predictive accuracy.The OMP model performed well with good accuracy(R^(2)=0.8727)while remaining computationally cheap,while other models(e.g.,neural networks,random forests)performed well but were too computationally expensive.Finally,to assess the robustness of the results,an error analysis indicated that residuals were evenly distributed around zero,confirming the results from the LAR model.The current research illustrates the potential of AI in anticipating drug solubility,providing support for green pharmaceutical design and environmental risk assessment.Future work should extend predictions to include degradation and toxicity to enhance predictive power and applicability. 展开更多
关键词 SOLUBILITY Prediction Machine Learning ECOTOXICITY logs
在线阅读 下载PDF
Fracturing mechanism of pre-damaged granite induced by multi-source dynamic disturbances in tunnels
5
作者 Biao Wang Benguo He +1 位作者 Xiating Feng Hongpu Li 《International Journal of Mining Science and Technology》 2025年第9期1439-1459,共21页
To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances... To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency. 展开更多
关键词 multi-source dynamic disturbances Blasting vibration Deep-buried tunnel Acoustic emission Time-delayed rockburst
在线阅读 下载PDF
A fluorescence-enhanced inverse opal sensing film for multi-sources detection of formaldehyde
6
作者 Xiaokang Lu Bo Han +6 位作者 Deyilei Wei Mingzhu Chu Haojie Ma Ran Li Xueyan Hou Yuqi Zhang Jijiang Wang 《Food Science and Human Wellness》 2025年第5期1818-1826,共9页
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-... The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications. 展开更多
关键词 Inverse opal photonic crystals Slow photon effect Fluorescence enhancement multi-sources detection FORMALDEHYDE
在线阅读 下载PDF
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
7
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Mechanism of Multi-Source Excitation for Whistling Sound of Gear Teeth in Automotive Electric Drive System
8
作者 Shuai Yuan Zhen Lin Wenfu Sun 《Journal of Electronic Research and Application》 2025年第4期65-70,共6页
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz... This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers. 展开更多
关键词 Automotive electric drive system Whistle of gear teeth multi-source excitation mechanism
在线阅读 下载PDF
Spectral graph convolution networks for microbialite lithology identification based on conventional well logs
9
作者 Ke-Ran Li Jin-Min Song +9 位作者 Han Wang Hai-Jun Yan Shu-Gen Liu Yang Lan Xin Jin Jia-Xin Ren Ling-Li Zhao Li-Zhou Tian Hao-Shuang Deng Wei Chen 《Petroleum Science》 2025年第4期1513-1533,共21页
Machine learning algorithms are widely used to interpret well logging data.To enhance the algorithms'robustness,shuffling the well logging data is an unavoidable feature engineering before training models.However,... Machine learning algorithms are widely used to interpret well logging data.To enhance the algorithms'robustness,shuffling the well logging data is an unavoidable feature engineering before training models.However,latent information stored between different well logging types and depth is destroyed during the shuffle.To investigate the influence of latent information,this study implements graph convolution networks(GCNs),long-short temporal memory models,recurrent neural networks,temporal convolution networks,and two artificial neural networks to predict the microbial lithology in the fourth member of the Dengying Formation,Moxi gas field,central Sichuan Basin.Results indicate that the GCN model outperforms other models.The accuracy,F1-score,and area under curve of the GCN model are 0.90,0.90,and 0.95,respectively.Experimental results indicate that the time-series data facilitates lithology prediction and helps determine lithological fluctuations in the vertical direction.All types of logs from the spectral in the GCN model and also facilitates lithology identification.Only on condition combined with latent information,the GCN model reaches excellent microbialite classification resolution at the centimeter scale.Ultimately,the two actual cases show tricks for using GCN models to predict potential microbialite in other formations and areas,proving that the GCN model can be adopted in the industry. 展开更多
关键词 Graph convolution network Mirobialite Lithology forecasting Well log
原文传递
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
10
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Pore pressure prediction based on conventional well logs and seismic data using an advanced machine learning approach
11
作者 Muhsan Ehsan Umar Manzoor +6 位作者 Rujun Chen Muyyassar Hussain Kamal Abdelrahman Ahmed E.Radwan Jar Ullah Muhammad Khizer Iftikhar Farooq Arshad 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2727-2740,共14页
Pore pressure is a decisive measure to assess the reservoir’s geomechanical properties,ensures safe and efficient drilling operations,and optimizes reservoir characterization and production.The conventional approache... Pore pressure is a decisive measure to assess the reservoir’s geomechanical properties,ensures safe and efficient drilling operations,and optimizes reservoir characterization and production.The conventional approaches sometimes fail to comprehend complex and persistent relationships between pore pressure and formation properties in the heterogeneous reservoirs.This study presents a novel machine learning optimized pore pressure prediction method with a limited dataset,particularly in complex formations.The method addresses the conventional approach's limitations by leveraging its capability to learn complex data relationships.It integrates the best Gradient Boosting Regressor(GBR)algorithm to model pore pressure at wells and later utilizes ContinuousWavelet Transformation(CWT)of the seismic dataset for spatial analysis,and finally employs Deep Neural Network for robust and precise pore pressure modeling for the whole volume.In the second stage,for the spatial variations of pore pressure in the thin Khadro Formation sand reservoir across the entire subsurface area,a three-dimensional pore pressure prediction is conducted using CWT.The relationship between the CWT and geomechanical properties is then established through supervised machine learning models on well locations to predict the uncertainties in pore pressure.Among all intelligent regression techniques developed using petrophysical and elastic properties for pore pressure prediction,the GBR has provided exceptional results that have been validated by evaluation metrics based on the R^(2) score i.e.,0.91 between the calibrated and predicted pore pressure.Via the deep neural network,the relationship between CWT resultant traces and predicted pore pressure is established to analyze the spatial variation. 展开更多
关键词 Pore pressure Conventional well logs Seismic data Machine learning Complex formations
在线阅读 下载PDF
EILnet: An intelligent model for the segmentation of multiple fracture types in karst carbonate reservoirs using electrical image logs
12
作者 Zhuolin Li Guoyin Zhang +4 位作者 Xiangbo Zhang Xin Zhang Yuchen Long Yanan Sun Chengyan Lin 《Natural Gas Industry B》 2025年第2期158-173,共16页
Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventi... Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventional approach of identifying fractures using electrical image logs predominantly relies on manual processes that are not only time-consuming but also highly subjective.In addition,the heterogeneity and strong dissolution tendency of karst carbonate reservoirs lead to complexity and variety in fracture geometry,which makes it difficult to accurately identify fractures.In this paper,the electrical image logs network(EILnet)da deep-learning-based intelligent semantic segmentation model with a selective attention mechanism and selective feature fusion moduledwas created to enable the intelligent identification and segmentation of different types of fractures through electrical logging images.Data from electrical image logs representing structural and induced fractures were first selected using the sliding window technique before image inpainting and data augmentation were implemented for these images to improve the generalizability of the model.Various image-processing tools,including the bilateral filter,Laplace operator,and Gaussian low-pass filter,were also applied to the electrical logging images to generate a multi-attribute dataset to help the model learn the semantic features of the fractures.The results demonstrated that the EILnet model outperforms mainstream deep-learning semantic segmentation models,such as Fully Convolutional Networks(FCN-8s),U-Net,and SegNet,for both the single-channel dataset and the multi-attribute dataset.The EILnet provided significant advantages for the single-channel dataset,and its mean intersection over union(MIoU)and pixel accuracy(PA)were 81.32%and 89.37%,respectively.In the case of the multi-attribute dataset,the identification capability of all models improved to varying degrees,with the EILnet achieving the highest MIoU and PA of 83.43%and 91.11%,respectively.Further,applying the EILnet model to various blind wells demonstrated its ability to provide reliable fracture identification,thereby indicating its promising potential applications. 展开更多
关键词 Karst fracture identification Deep learning Semantic segmentation Electrical image logs Image processing
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
13
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
sTfR和sTfR/logSF对维持性腹膜透析患者发生铁缺乏的诊断价值研究
14
作者 李桂红 王真虎 +1 位作者 王伟平 陈添彬 《中国现代药物应用》 2025年第19期11-16,共6页
目的探讨血清可溶性转铁蛋白受体(sTfR)和sTfR/铁蛋白指数(sTfR/logSF)对维持性腹膜透析(PD)患者发生铁缺乏的诊断价值。方法回顾性选取规律随访的95例维持性PD患者作为研究对象,根据是否缺铁分为非缺铁组(A组,41例)、功能性缺铁组(B组... 目的探讨血清可溶性转铁蛋白受体(sTfR)和sTfR/铁蛋白指数(sTfR/logSF)对维持性腹膜透析(PD)患者发生铁缺乏的诊断价值。方法回顾性选取规律随访的95例维持性PD患者作为研究对象,根据是否缺铁分为非缺铁组(A组,41例)、功能性缺铁组(B组,17例)和绝对性缺铁组(C组,37例);另选取同期39例健康体检者为对照组进行对照研究。收集各组临床病史资料及各项实验室检测指标,用Spearman分析不同代谢状态下sTfR与血红蛋白(Hb)、血清白蛋白(Alb)、血清铁(SI)、总铁结合力(TIBC)、转铁蛋白饱和度(TSAT)、血清转铁蛋白(TRF)、血清铁蛋白(SF)的相关性;采用多因素二元Logistic回归模型分析维持性PD患者发生绝对性铁缺乏的危险因素,并绘制受试者工作特征曲线(ROC),计算曲线下面积(AUC)以分析sTfR、sTfR/logSF和TRF、TIBC、SI对维持性PD患者发生绝对性铁缺乏的预测价值。结果四组性别、年龄、体重、红细胞计数(RBC)、Hb、平均红细胞血红蛋白含量(MCH)、平均红细胞血红蛋白浓度(MCHC)、Alb、SI、TIBC、TSAT、TRF、SF、sTfR、sTfR/logSF比较差异显著(P<0.05)。四组平均红细胞体积(MCV)、透析时间比较无明显差异(P>0.05)。A组、B组、C组的体重、RBC、Hb、Alb均明显低于对照组(P<0.05);B组、C组的SI、TSAT均明显低于A组和对照组(P<0.05);C组的SF明显低于A组、B组、对照组,TIBC、TRF、sTfR、sTfR/logSF均明显高于A组、B组、对照组(P<0.05);A组、C组年龄高于对照组(P<0.05);C组MCH、MCHC低于对照组(P<0.05);B组TRF高于对照组、A组,Hb低于A组(P<0.05);C组MCH、MCHC、Alb低于A组,RBC、Hb高于B组(P<0.05);A组Hb高于B组(P<0.05);B组与C组的MCH、MCHC、SI、TSAT无明显差异(P>0.05)。采用Spearman分析不同铁状态下sTfR与Hb、Alb、SI、TIBC、TSAT、TRF、SF的相关性,A组、B组、C组sTfR均与Hb呈正相关(r=0.319、0.500、0.413,P<0.05),与Alb、SI、TSAT无相关性(P>0.05)。C组sTfR与TIBC、TRF均呈正相关(r=0.588、0.597,P<0.05);B组sTfR与SF呈负相关(r=-0.518,P<0.05)。采用多因素二元Logistic回归模型探讨影响维持性PD患者发生绝对性铁缺乏的危险因素,结果显示sTfR[OR=6.037,95%CI=(1.611,22.624)]和TRF[OR=4.639,95%CI=(1.518,14.171)]是维持性PD患者发生绝对性铁缺乏的危险因素(P<0.01)。sTfR、sTfR/logSF、TRF、TIBC、SI的AUC分别为0.785、0.919、0.801、0.798、0.799。其中sTfR与SI、TRF、TIBC的AUC相近,sTfR/logSF的AUC大于sTfR、SI、TRF、TIBC。表明sTfR/logSF对维持性PD患者发生绝对性铁缺乏的预测价值明显优于sTfR、SI、TRF、TIBC,且sTfR/logSF为0.711时,对维持性PD患者发生绝对性铁缺乏的诊断特异度达到91.2%。结论sTfR对维持性PD患者发生绝对性铁缺乏的预测价值与SI、TRF、TIBC无明显差异,但sTfR/logSF对其预测价值优于sTfR。 展开更多
关键词 血清可溶性转铁蛋白受体 血清可溶性转铁蛋白受体/铁蛋白指数 维持性腹膜透析 铁代谢 铁缺乏
暂未订购
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
15
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
16
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting multi-source fusion
在线阅读 下载PDF
Belief exponential divergence for D-S evidence theory and its application in multi-source information fusion 被引量:2
17
作者 DUAN Xiaobo FAN Qiucen +1 位作者 BI Wenhao ZHANG An 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1454-1468,共15页
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss... Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences. 展开更多
关键词 Dempster-Shafer(D-S)evidence theory multi-source information fusion conflict measurement belief expo-nential divergence(BED) target recognition
在线阅读 下载PDF
自适应阈值LOG与Canny算法结合的图像边缘检测研究 被引量:1
18
作者 金义舒 黄平 +5 位作者 郑福印 潘睿 张嘉栋 史文哲 陈皓林 李岳 《通信与信息技术》 2025年第3期122-124,共3页
图像边缘检测是计算机视觉和图像处理领域中的关键任务,对于图像分割、特征提取和目标识别等应用具有重要意义。传统的Canny算法和LOG算法在图像边缘检测中各有优势,但均存在局限:Canny算法无法检测梯度较小边缘细节,LOG算法对噪声敏感... 图像边缘检测是计算机视觉和图像处理领域中的关键任务,对于图像分割、特征提取和目标识别等应用具有重要意义。传统的Canny算法和LOG算法在图像边缘检测中各有优势,但均存在局限:Canny算法无法检测梯度较小边缘细节,LOG算法对噪声敏感且需手动设置阈值。为规避两种算法劣势,同时克服LOG算法中阈值需手动设定的局限性,本文提出了一种自适应阈值LOG与Canny算法相结合的图像边缘检测方法,详细阐述了自适应阈值LOG算法设计、Canny算法与自适应阈值LOG算法结合策略以及实验验证等内容。首先,本研究设计了自适应阈值LOG算法,旨在自动调整阈值以适应不同图像特性,从而减少对噪声的敏感性。其次,本研究提出了Canny算法与自适应阈值LOG算法的结合策略,旨在结合两者的优势,既能够检测到细微的边缘细节,又能在一定程度上抑制噪声干扰。结果表明,自适应阈值机制保留了Canny和LOG算法优势,大大提高了算法的自动化程度和检测效果,实时边缘检测的准确性与鲁棒性得到进一步提升。 展开更多
关键词 边缘检测 CANNY算法 log算法 图像融合 自适应阈值
在线阅读 下载PDF
Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies 被引量:5
19
作者 Kai Zhang Hai-Qun Yu +7 位作者 Xiao-Peng Ma Jin-Ding Zhang Jian Wang Chuan-Jin Yao Yong-Fei Yang Hai Sun Jun Yao Jian Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期707-719,共13页
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for... For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching. 展开更多
关键词 multi-source information Automatic history matching Deep learning Data assimilation Generative model
原文传递
Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation 被引量:5
20
作者 李明超 韩彦青 +1 位作者 缪正建 高伟 《Transactions of Tianjin University》 EI CAS 2014年第1期7-14,共8页
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana... Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands. 展开更多
关键词 multi-source data geological data interpretation interpolation-approximation fitting 3D geological sur-face modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部