We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both sp...We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide...The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atom...This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.展开更多
Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)informati...Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)information.This paper proposes a security position verification technique based on Multilateration(MLAT)to detect false signals,ensuring UAV safety and reliable airspace operations.First,the proposed method estimates the current position of the UAV by calculating the Time Difference of Arrival(TDOA),Time Sum of Arrival(TSOA),and Angle of Arrival(AOA)information.Then,this estimated position is compared with the ADS-B message to eliminate false UAV signals.Furthermore,a localization model based on TDOA/TSOA/AOA is established by utilizing reliable reference sources for base station time synchronization.Additionally,an improved Chan-Taylor algorithm is developed,incorporating the Constrained Weighted Least Squares(CWLS)method to initialize UAV position calculations.Finally,a false signal detection method is proposed to distinguish between true and false positioning targets.Numerical simulation results indicate that,at a positioning error threshold of 150 m,the improved Chan-Taylor algorithm based on TDOA/TSOA/AOA achieves 100%accuracy coverage,significantly enhancing localization precision.And the proposed false signal detection method achieves a detection accuracy rate of at least 90%within a 50-meter error range.展开更多
To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances...To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on co...Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist polic...This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist policies aimed at administrative integration and religious regulation;(2)Kalmyk adaptive strategies,particularly the development of unique institutional responses(Supreme Lama election,Chief Bagshi,Dayanqi,and Temple Adherent systems)to navigate state constraints;and(3)spontaneous processes of cultural hybridity are manifested in material culture(e.g.,the Khoshut temple)and religious narratives(e.g.,Ulyanov’s reinvention of prophecies in Prophecies of Buddha).Utilizing the concept of“conjuncture practice”to frame these interactions,the study demonstrates how localization operated through a combination of regulatory pressure,community-level adaptation,and cultural synthesis,ultimately forging a distinct Kalmyk Buddhist expression within the imperial context.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is eq...Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is equipped with a GNSS receiver,it can be independent and is readily to be loaded on a flexible platform,such as an unmanned aerial vehicle(UAV).In this paper,we consider using such sensors and timeof-arrival(TOA)techniques to locate a radio signal source,and analyze the performance limit of source localization.Besides the performance analysis,this paper provides the geometric interpretation of the performance limit,which can illustrate how a sensor contributes to the source localization accuracy.The performance analysis and the geometric interpretation together give important insights into how to make better use of GNSS receiver for passive localization.Another contribution is we propose a modified closedform solution for this localization problem.Compared with previous literature,this solution takes both sensor position and synchronization uncertainty into account,and it does not need proper initial guess of source position and is computationally efficient.Our simulation results validate the efficiency of this solution.展开更多
Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that as...Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.展开更多
基金The National Natural Science Foundation of China under contract No.61671481the Qingdao Applied Fundamental Research under contract No.16-5-1-11-jchthe Fundamental Research Funds for Central Universities under contract No.18CX05014A
文摘We present a novel sea-ice classification framework based on locality preserving fusion of multi-source images information.The locality preserving fusion arises from two-fold,i.e.,the local characterization in both spatial and feature domains.We commence by simultaneously learning a projection matrix,which preserves spatial localities,and a similarity matrix,which encodes feature similarities.We map the pixels of multi-source images by the projection matrix to a set fusion vectors that preserve spatial localities of the image.On the other hand,by applying the Laplacian eigen-decomposition to the similarity matrix,we obtain another set of fusion vectors that preserve the feature local similarities.We concatenate the fusion vectors for both spatial and feature locality preservation and obtain the fusion image.Finally,we classify the fusion image pixels by a novel sliding ensemble strategy,which enhances the locality preservation in classification.Our locality preserving fusion framework is effective in classifying multi-source sea-ice images(e.g.,multi-spectral and synthetic aperture radar(SAR)images)because it not only comprehensively captures the spatial neighboring relationships but also intrinsically characterizes the feature associations between different types of sea-ices.Experimental evaluations validate the effectiveness of our framework.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金supported by the National Natural Science Foundation of China(T2325023,92265204,12104447)the National Key R&D Program of China(2023YFF0718400)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0302200)the Fundamental Research Funds for the Central Universities。
文摘This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.
基金supported by the National Natural Science Foundation of China(Nos.U2441250,62301380,and 62231027)Natural Science Basic Research Program of Shaanxi,China(2024JC-JCQN-63)+3 种基金the Key Research and Development Program of Shaanxi,China(No.2023-YBGY-249)the Guangxi Key Research and Development Program,China(No.2022AB46002)the China Postdoctoral Science Foundation(No.2022M722504 and 2024T170696)the Innovation Capability Support Program of Shaanxi,China(No.2024RS-CXTD-01).
文摘Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)information.This paper proposes a security position verification technique based on Multilateration(MLAT)to detect false signals,ensuring UAV safety and reliable airspace operations.First,the proposed method estimates the current position of the UAV by calculating the Time Difference of Arrival(TDOA),Time Sum of Arrival(TSOA),and Angle of Arrival(AOA)information.Then,this estimated position is compared with the ADS-B message to eliminate false UAV signals.Furthermore,a localization model based on TDOA/TSOA/AOA is established by utilizing reliable reference sources for base station time synchronization.Additionally,an improved Chan-Taylor algorithm is developed,incorporating the Constrained Weighted Least Squares(CWLS)method to initialize UAV position calculations.Finally,a false signal detection method is proposed to distinguish between true and false positioning targets.Numerical simulation results indicate that,at a positioning error threshold of 150 m,the improved Chan-Taylor algorithm based on TDOA/TSOA/AOA achieves 100%accuracy coverage,significantly enhancing localization precision.And the proposed false signal detection method achieves a detection accuracy rate of at least 90%within a 50-meter error range.
基金supported by the National Key R&D Program of China(No.2023YFB2603602)the National Natural Science Foundation of China(Nos.52222810 and 52178383).
文摘To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金supported by the Sichuan Science and Technology Program(Nos.2024JDRC0100 and 2023YFQ0091)the National Natural Science Foundation of China(Nos.U21A20167 and 52475138)the Scientific Research Foundation of the State Key Laboratory of Rail Transit Vehicle System(No.2024RVL-T08).
文摘Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
文摘This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist policies aimed at administrative integration and religious regulation;(2)Kalmyk adaptive strategies,particularly the development of unique institutional responses(Supreme Lama election,Chief Bagshi,Dayanqi,and Temple Adherent systems)to navigate state constraints;and(3)spontaneous processes of cultural hybridity are manifested in material culture(e.g.,the Khoshut temple)and religious narratives(e.g.,Ulyanov’s reinvention of prophecies in Prophecies of Buddha).Utilizing the concept of“conjuncture practice”to frame these interactions,the study demonstrates how localization operated through a combination of regulatory pressure,community-level adaptation,and cultural synthesis,ultimately forging a distinct Kalmyk Buddhist expression within the imperial context.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
基金supported by the National Natural Science Foundation of China(Grant No.61973181)Tsinghua University Initiative Scientific Research Program(Grant No.2018Z05JZY004).
文摘Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is equipped with a GNSS receiver,it can be independent and is readily to be loaded on a flexible platform,such as an unmanned aerial vehicle(UAV).In this paper,we consider using such sensors and timeof-arrival(TOA)techniques to locate a radio signal source,and analyze the performance limit of source localization.Besides the performance analysis,this paper provides the geometric interpretation of the performance limit,which can illustrate how a sensor contributes to the source localization accuracy.The performance analysis and the geometric interpretation together give important insights into how to make better use of GNSS receiver for passive localization.Another contribution is we propose a modified closedform solution for this localization problem.Compared with previous literature,this solution takes both sensor position and synchronization uncertainty into account,and it does not need proper initial guess of source position and is computationally efficient.Our simulation results validate the efficiency of this solution.
基金Supported by Beijing Natural Science Foundation(Grant No.L231004)Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.2025JBMC039)National Key Research and Development Program(Grant No.2022YFC2805200)National Natural Science Foundation of China(Grant No.52371338).
文摘Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.