To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances...To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on co...Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the...To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.展开更多
Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade...Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.展开更多
The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution an...The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.展开更多
Based on the characteristics of laser-induced surface ignition,energetic photosensitive films show promising potential to meet the ignition requirements of various energetic materials(EMs).In this study,DATNBI/ferric ...Based on the characteristics of laser-induced surface ignition,energetic photosensitive films show promising potential to meet the ignition requirements of various energetic materials(EMs).In this study,DATNBI/ferric alginate(DI/FeA),DI/cobalt alginate(DI/CoA),and DI/nickel alginate(DI/Ni A)films are fabricated by employing sodium alginate(SA)with a three-dimensional network structure as the film matrix,via ionic cross-linking of SA with Fe^(3+),Co^(2+),and Ni^(2+)ions.The study demonstrates that the ionic cross-linking enhances the hydrophobic performance of the films,with the water contact angle increasing from 82.1??to 123.5??.Concurrently,the films'near-infrared(NIR)light absorption improved.Furthermore,transition metal ions facilitate accelerated electron transfer,thereby catalyzing the thermal decomposition of DATNBI.Under 1064 nm laser irradiation,the DI/Fe A film exhibits exceptional combustion performance,with an ignition delay time as low as 76 ms.It successfully acts as an NIR laser ignition medium to initiate the self-sustained combustion of CL-20.This study demonstrates the synergistic realization of enhanced hydrophobicity,improved photosensitivity,and promoted catalytic decomposition through microstructural design of the material,providing new insights for the design of additive-free EMs in laser ignition applications.展开更多
The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film coo...The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.展开更多
A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam qualit...A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam quality and reducing the energy spread.The functionality of the RFQ cooler buncher was verified through offline tests with stable rubidium and indium beams delivered from a surface ion source and a laser ablation ion source,respectively.Bunched ion beams with a full width at half maximum of approximately 2μs in the time-of-flight spectrum were successfully achieved with a transmission efficiency exceeding 60%.The implementation of the RFQ cooler-buncher system also significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup.展开更多
Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study el...Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials.展开更多
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble...Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.展开更多
Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite elemen...Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB2603602)the National Natural Science Foundation of China(Nos.52222810 and 52178383).
文摘To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金supported by the Sichuan Science and Technology Program(Nos.2024JDRC0100 and 2023YFQ0091)the National Natural Science Foundation of China(Nos.U21A20167 and 52475138)the Scientific Research Foundation of the State Key Laboratory of Rail Transit Vehicle System(No.2024RVL-T08).
文摘Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金National Natural Science Foundation of China(51504138,51674118,52271177)Hunan Provincial Natural Science Foundation of China(2023JJ50181)Supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2024-022)。
文摘To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.
文摘Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62450006,62304217,62274157,62127807,62234011,62034008,62074142,62074140)Tianshan Innovation Team Program(Grant No.2022TSYCTD0005)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0880000)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2023124,Y2023032)。
文摘The 193 nm deep-ultraviolet(DUV)laser plays a critical role in advanced semiconductor chip manufacturing[1,2],micro-nano material characterization[3,4]and biomedical analysis[5,6],due to its high spatial resolution and short wavelength.Efficient and compact 193 nm DUV laser source thus becomes a hot research area.Currently,193 nm Ar F excimer gas laser is widely employed in DUV lithography systems and serves as the enabling technology for 7 and 5 nm semiconductor fabrication.
基金supported by Research Fund of SWUST for PhD(Grant No.22zx7175)Sichuan Science and Technology Program(Grant No.2024NSFSC1097)。
文摘Based on the characteristics of laser-induced surface ignition,energetic photosensitive films show promising potential to meet the ignition requirements of various energetic materials(EMs).In this study,DATNBI/ferric alginate(DI/FeA),DI/cobalt alginate(DI/CoA),and DI/nickel alginate(DI/Ni A)films are fabricated by employing sodium alginate(SA)with a three-dimensional network structure as the film matrix,via ionic cross-linking of SA with Fe^(3+),Co^(2+),and Ni^(2+)ions.The study demonstrates that the ionic cross-linking enhances the hydrophobic performance of the films,with the water contact angle increasing from 82.1??to 123.5??.Concurrently,the films'near-infrared(NIR)light absorption improved.Furthermore,transition metal ions facilitate accelerated electron transfer,thereby catalyzing the thermal decomposition of DATNBI.Under 1064 nm laser irradiation,the DI/Fe A film exhibits exceptional combustion performance,with an ignition delay time as low as 76 ms.It successfully acts as an NIR laser ignition medium to initiate the self-sustained combustion of CL-20.This study demonstrates the synergistic realization of enhanced hydrophobicity,improved photosensitivity,and promoted catalytic decomposition through microstructural design of the material,providing new insights for the design of additive-free EMs in laser ignition applications.
基金supported by the National Natural Science Foundation of China(No.52205468,No.52275431,No.52375186)China Postdoctoral Science Foundation(No.2025M771349)Zhejiang Province Natural Science Foundation(No.LD22E050001)。
文摘The latest generation of aero engines has set higher standards for thrust-to-weight ratio and energy conversion efficiency,making it imperative to address the challenge of efficiently and accurately machining film cooling holes.It has been demonstrated that conventional long-pulse lasers are incapable of meeting the elevated quality surface finish requirements for these holes,a consequence of the severe thermal defects.The employment of backside water-assisted laser drilling technology confers a number of distinct advantages in terms of mitigating laser thermal damage,thus representing a highly promising solution to this challenge.However,significant accumulation of bubbles and machining products during the backside water-assisted laser drilling process has been demonstrated to have a detrimental effect on laser transmission and machining stability,thereby reducing machining quality.In order to surmount these challenges,a novel method has been proposed,namely an ultrasonic shock water flow-assisted picosecond laser drilling technique.Numerical models for ultrasonic acoustic streaming and particle tracking for machining product transport have been established to investigate the mechanism.The simulation results demonstrated that the majority of the machining products could rapidly move away from the machining area because of the action of acoustic streaming,thereby avoiding the accumulation of bubbles and products.Subsequent analysis,comparing the process performance in micro-hole machining,confirmed that the ultrasonic field could effectively eliminate bubble and chip accumulation,thus significantly improving micro-hole quality.Furthermore,the impact of ultrasonic and laser parameters on micro-hole quality under varying machining methods was thoroughly investigated.The findings demonstrated that the novel methodology outlined in this study yielded superior-quality micro-holes at elevated ultrasonic and laser power levels,in conjunction with reduced laser frequency and scanning velocity.The taper of the micro-holes produced by the new method was reduced by more than 25%compared with the other conventional methods.
基金supported by the National Natural Science Foundation of China(Nos.12027809,12350007)National Key R&D Program of China(Nos.2022YFA1605100,2023YFA1606403,and 2023YFE0101600)+1 种基金New Cornerstone Science Foundation through the XPLORER PRIZEfunding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program under grant agreement No.679038.
文摘A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam quality and reducing the energy spread.The functionality of the RFQ cooler buncher was verified through offline tests with stable rubidium and indium beams delivered from a surface ion source and a laser ablation ion source,respectively.Bunched ion beams with a full width at half maximum of approximately 2μs in the time-of-flight spectrum were successfully achieved with a transmission efficiency exceeding 60%.The implementation of the RFQ cooler-buncher system also significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup.
基金financial support from NSF ExpandQISE program.The synthesis of tellurene was supported by NSF under grant no.CMMI-2046936supports from Purdue Research Foundation.
文摘Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials.
文摘Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.
基金The authors would like to acknowledge the China Postdoctoral Science Foundation(Grant No.2019M660488)to provide fund for this work.
文摘Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.