In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies an...In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies ...The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies in the derived measurement covariance even causing filter divergence.To reduce the gap between theoretical and actual covariances,some adaptive methods use empirically determined and unchanged forgetting factors to scale innovations within the sliding window.However,the constant weighting sequence cannot accurately adapt to the time-varying measurement noise in dynamic processes.Therefore,this paper proposes an Adaptive Robust Unscented Kalman Filter with Time-varying forgetting factors(TFF-ARUKF)for the angle/range integrated navigation system.Firstly,based on a statistically linear regression model approximating the nonlinear measurement model,the M-estimator is adopted to suppress the interference of outliers.Secondly,the covariance matching method is combined with the Huber linear regression problem to adaptively adjust the measurement noise covariance used in the M-estimation.Thirdly,to capture the time-varying characteristics of the measurement noise in each estimation,a new timevarying forgetting factors selection strategy is designed to dynamically adjust the adaptive matrix used in the covariance matching method.Simulations and experimental analysis compared with EKF,AMUKF,ARUKF,and Student's t-based methods have validated the effectiveness and robustness of the proposed algorithm.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of...As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.展开更多
High-performance positioning,navigation and timing(PNT)service is critical to the safe flight of low-altitude aircraft and the effective management of low altitude traffic.In low-altitude economic sce-narios,the speci...High-performance positioning,navigation and timing(PNT)service is critical to the safe flight of low-altitude aircraft and the effective management of low altitude traffic.In low-altitude economic sce-narios,the specificity of massive unmanned aerial ve-hicle(UAV)flights and the complexity of low-altitude airspace traffic management impose stringent demand on the high-continuity,high-accuracy,real-time,and high-security PNT service.However,the current PNT service,which primarily relies on Global Navigation Satellite System(GNSS),Micro-Electro-Mechanical System Inertial Navigation System(MEMS INS),etc.,is completely inadequate to support the future needs of low-altitude economic development.In order to bridge the huge gap between existing capability and future demand,a three-layer PNT architecture based on the collaboration of space-based,air-based and ground-based PNT systems is proposed for low-altitude econ-omy.The space-based layer consists of high,medium even possible low orbit GNSS constellations,such as BeiDou Navigation Satellite System(BDS),for high-precision,high-security absolute positioning and tim-ing.The air-based layer leverages inter-aircraft links for high-reliability dynamic relative positioning.The ground-based layer includes pseudolite network,as well as 5G-advanced(5G-A)/6G network,for more comprehensive coverage and real-time positioning.To this end,it is imperative to make breakthroughs in key technologies,from systems to airborne terminal,in-cluding but not limited to high-precision anti-jamming GNSS signal processing,high-reliability relative po-sitioning,real-time pseudolite positioning,and high-efficient multi-source information fusion at airborne terminal,etc.Due to the moderate redundancy,hetero-geneous mechanism,and multiple coverage from mul-tiple PNT systems,the proposed layered PNT archi-tecture possesses high robustness and resilient.Addi-tionally,the integration of INS,LiDAR and vision etc.perception technologies can significantly enhance the PNT capability.As a result,the proposed three-layer PNT architecture enable greater autonomy for low-altitude aircraft and intelligent traffic management for massive UAV operations,and promoting the safe and efficient development of the low-altitude economy.展开更多
The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technolo...The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technology.To address these restraints,the BeiDou navigation satellite system/strapdown inertial navigation system(BDS/SINS)integrated train positioning system based on an adaptive unscented Kalman filter(AUKF)is proposed.Firstly,the combined denoising algorithm(CDA)and Lagrange interpolation algorithm are introduced to preprocess the original data,effectively eliminating the influence of noise signals and abnormal measurements on the train positioning system.Secondly,the innovation theory is incorporated into the unscented Kalman filter(UKF)to derive the AUKF,which accomplishes an adaptive update of the measurement noise covariance.Finally,the positioning performance of the proposed AUKF is contrasted with that of conventional algorithms in various operation scenes.Simulation results demonstrate that the average value of error calculated by AUKF is less than 1.5 m,and the success rate of positioning touches 95.0%.Compared to Kalman filter(KF)and UKF,AUKF exhibits superior accuracy and stability in train positioning.Consequently,the proposed AUKF is well-suited for providing precise positioning services in variable operating environments for trains.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal...A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.展开更多
In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obta...In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.展开更多
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated...Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of indivi...Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of individual prediction methods.This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model(PSO-PIP),which incorporates a particle swarm optimization algorithm enhanced with dy-namic clustering and adaptive parameter tuning(KGPSO).The model integrates multi-source data from the Lattice Boltzmann Method(LBM),Pore Network Modeling(PNM),and Finite Difference Method(FDM).By assigning optimal weight coefficients to the outputs of these methods,the model minimizes deviations from actual values and enhances permeability prediction performance.Initially,the computational performances of the LBM,PNM,and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples.It is observed that these methods exhibit computational biases in certain permeability ranges.The PSOPIP model is proposed to combine the strengths of each computational approach and mitigate their limitations.The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals,significantly enhancing prediction accuracy.The outcomes of this study provide a new tool and perspective for the comprehensive,rapid,and accurate prediction of permeability in porous media.展开更多
Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and curren...Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors(position and attitude) of planetary rovers, the performance of the Kalman filter(KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated navigation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time relevance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter(EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault toleran...In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.展开更多
The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering ...The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.展开更多
This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscente...This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.92371201 and 52192633)the Natural Science Foundation of Shaanxi Province of China(No.2022JC-03)the Aeronautical Science Foundation of China(No.ASFC-20220019070002)。
文摘In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA0350400)。
文摘The angle/range-based integrated navigation system is a favorable navigation solution for deep space explorers.However,the statistical characteristics of the measurement noise are time-varying,leading to inaccuracies in the derived measurement covariance even causing filter divergence.To reduce the gap between theoretical and actual covariances,some adaptive methods use empirically determined and unchanged forgetting factors to scale innovations within the sliding window.However,the constant weighting sequence cannot accurately adapt to the time-varying measurement noise in dynamic processes.Therefore,this paper proposes an Adaptive Robust Unscented Kalman Filter with Time-varying forgetting factors(TFF-ARUKF)for the angle/range integrated navigation system.Firstly,based on a statistically linear regression model approximating the nonlinear measurement model,the M-estimator is adopted to suppress the interference of outliers.Secondly,the covariance matching method is combined with the Huber linear regression problem to adaptively adjust the measurement noise covariance used in the M-estimation.Thirdly,to capture the time-varying characteristics of the measurement noise in each estimation,a new timevarying forgetting factors selection strategy is designed to dynamically adjust the adaptive matrix used in the covariance matching method.Simulations and experimental analysis compared with EKF,AMUKF,ARUKF,and Student's t-based methods have validated the effectiveness and robustness of the proposed algorithm.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
文摘As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.
基金supported in part by the National Key R&D Program of China under Grant 2021YFA0716600 and 2024ZD1300100in part by the National Natural Science Foundation of China under Grant 42274018,42425401,62371029,62271285 and U2233217.
文摘High-performance positioning,navigation and timing(PNT)service is critical to the safe flight of low-altitude aircraft and the effective management of low altitude traffic.In low-altitude economic sce-narios,the specificity of massive unmanned aerial ve-hicle(UAV)flights and the complexity of low-altitude airspace traffic management impose stringent demand on the high-continuity,high-accuracy,real-time,and high-security PNT service.However,the current PNT service,which primarily relies on Global Navigation Satellite System(GNSS),Micro-Electro-Mechanical System Inertial Navigation System(MEMS INS),etc.,is completely inadequate to support the future needs of low-altitude economic development.In order to bridge the huge gap between existing capability and future demand,a three-layer PNT architecture based on the collaboration of space-based,air-based and ground-based PNT systems is proposed for low-altitude econ-omy.The space-based layer consists of high,medium even possible low orbit GNSS constellations,such as BeiDou Navigation Satellite System(BDS),for high-precision,high-security absolute positioning and tim-ing.The air-based layer leverages inter-aircraft links for high-reliability dynamic relative positioning.The ground-based layer includes pseudolite network,as well as 5G-advanced(5G-A)/6G network,for more comprehensive coverage and real-time positioning.To this end,it is imperative to make breakthroughs in key technologies,from systems to airborne terminal,in-cluding but not limited to high-precision anti-jamming GNSS signal processing,high-reliability relative po-sitioning,real-time pseudolite positioning,and high-efficient multi-source information fusion at airborne terminal,etc.Due to the moderate redundancy,hetero-geneous mechanism,and multiple coverage from mul-tiple PNT systems,the proposed layered PNT archi-tecture possesses high robustness and resilient.Addi-tionally,the integration of INS,LiDAR and vision etc.perception technologies can significantly enhance the PNT capability.As a result,the proposed three-layer PNT architecture enable greater autonomy for low-altitude aircraft and intelligent traffic management for massive UAV operations,and promoting the safe and efficient development of the low-altitude economy.
基金supported by Project Fund of China National Railway Group Co.,Ltd.(No.N2022G012)Natonal Natural Science Foundation of China(No.61661027)。
文摘The traditional train positioning methods suffer from inadequate accuracy and high maintenance costs,rendering them unsuitable for the development requirements of lightweight and intelligent train positioning technology.To address these restraints,the BeiDou navigation satellite system/strapdown inertial navigation system(BDS/SINS)integrated train positioning system based on an adaptive unscented Kalman filter(AUKF)is proposed.Firstly,the combined denoising algorithm(CDA)and Lagrange interpolation algorithm are introduced to preprocess the original data,effectively eliminating the influence of noise signals and abnormal measurements on the train positioning system.Secondly,the innovation theory is incorporated into the unscented Kalman filter(UKF)to derive the AUKF,which accomplishes an adaptive update of the measurement noise covariance.Finally,the positioning performance of the proposed AUKF is contrasted with that of conventional algorithms in various operation scenes.Simulation results demonstrate that the average value of error calculated by AUKF is less than 1.5 m,and the success rate of positioning touches 95.0%.Compared to Kalman filter(KF)and UKF,AUKF exhibits superior accuracy and stability in train positioning.Consequently,the proposed AUKF is well-suited for providing precise positioning services in variable operating environments for trains.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金This project was supported by the National Natural Science Foundation of China (40125013 &40376011)
文摘A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
基金co-supported by the National Natural Science Foundation of China(No.61153002)the Aeronautical Science Foundation of China(No.20130153002)
文摘In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.
基金supported by the National Natural Science Foundation of China(61722301)
文摘Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金supported by the National Key Research and Devel-opment Program of China (Grant No.2022YFC3005503)the National Natural Science Foundation of China (Grant Nos.52322907,52179141,U23B20149,U2340232)+1 种基金the Fundamental Research Funds for the Central Universities (Grant Nos.2042024kf1031,2042024kf0031)the Key Program of Science and Technology of Yunnan Province (Grant Nos.202202AF080004,202203AA080009).
文摘Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of individual prediction methods.This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model(PSO-PIP),which incorporates a particle swarm optimization algorithm enhanced with dy-namic clustering and adaptive parameter tuning(KGPSO).The model integrates multi-source data from the Lattice Boltzmann Method(LBM),Pore Network Modeling(PNM),and Finite Difference Method(FDM).By assigning optimal weight coefficients to the outputs of these methods,the model minimizes deviations from actual values and enhances permeability prediction performance.Initially,the computational performances of the LBM,PNM,and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples.It is observed that these methods exhibit computational biases in certain permeability ranges.The PSOPIP model is proposed to combine the strengths of each computational approach and mitigate their limitations.The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals,significantly enhancing prediction accuracy.The outcomes of this study provide a new tool and perspective for the comprehensive,rapid,and accurate prediction of permeability in porous media.
基金supported by the National Natural Science Foundation of China (Nos. 61233005 and 61503013)the National Basic Research Program of China (No. 2014CB744202)+2 种基金Beijing Youth Talent ProgramFundamental Science on Novel Inertial Instrument & Navigation System Technology LaboratoryProgram for Changjiang Scholars and Innovative Research Team in University (IRT1203) for their valuable comments
文摘Inertial navigation system/visual navigation system(INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors(position and attitude) of planetary rovers, the performance of the Kalman filter(KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated navigation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time relevance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter(EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
基金supported by the National Natural Science Foundationof China (60902055)
文摘In order to take full advantage of federated filter in fault-tolerant design of integrated navigation system, the limitation of fault detection algorithm for gradual changing fault detection and the poor fault tolerance of global optimal fusion algorithm are the key problems to deal with. Based on theoretical analysis of the influencing factors of federated filtering fault tolerance, global fault-tolerant fusion algorithm and information sharing algorithm are proposed based on fuzzy assessment. It achieves intelligent fault-tolerant structure with two-stage and feedback, including real-time fault detection in sub-filters, and fault-tolerant fusion and information sharing in main filter. The simulation results demonstrate that the algorithm can effectively improve fault-tolerant ability and ensure relatively high positioning precision of integrated navigation system when a subsystem having gradual changing fault.
基金Supported by the National Natural Science Foundation of China (No.40274002 No.40474001).
文摘The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.
基金supported by the National Basic Research Program of China(973Program)(2014CB744206)
文摘This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscented Kalman filter(MMAE-UKF) rather than conventional Kalman filter methods,like the extended Kalman filter(EKF) and the unscented Kalman filter(UKF). UKF is used as a subfilter to obtain the system state estimate in the MMAE method. Single model filter has poor adaptability with uncertain or unknown system parameters,which the improved filtering method can overcome. Meanwhile,this algorithm is used for integrated navigation system of strapdown inertial navigation system(SINS) and celestial navigation system(CNS) by a ballistic missile's motion. The simulation results indicate that the proposed filtering algorithm has better navigation precision, can achieve optimal estimation of system state, and can be more flexible at the cost of increased computational burden.