期刊文献+
共找到11,448篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-source image fusion algorithm based on fast weighted guided filter 被引量:6
1
作者 WANG Jian YANG Ke +2 位作者 REN Ping QIN Chunxia ZHANG Xiufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期831-840,共10页
In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Fi... In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation. 展开更多
关键词 FAST GUIDED FILTER image fusion visual feature DECISION map
在线阅读 下载PDF
Synthetically Evaluation System for Multi-source Image Fusion and Experimental Analysis 被引量:2
2
作者 肖刚 敬忠良 +1 位作者 吴建民 刘从义 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第3期263-270,共8页
Study on the evaluation system for multi-source image fusion is an important and necessary part of image fusion. Qualitative evaluation indexes and quantitative evaluation indexes were studied. A series of new concept... Study on the evaluation system for multi-source image fusion is an important and necessary part of image fusion. Qualitative evaluation indexes and quantitative evaluation indexes were studied. A series of new concepts, such as independent single evaluation index, union single evaluation index, synthetic evaluation index were proposed. Based on these concepts, synthetic evaluation system for digital image fusion was formed. The experiments with the wavelet fusion method, which was applied to fuse the multi-spectral image and panchromatic remote sensing image, the IR image and visible image, the CT and MRI image, and the multi-focus images show that it is an objective, uniform and effective quantitative method for image fusion evaluation. 展开更多
关键词 image fusion independent single evaluation union single evaluation synthetic evaluation evaluation system
在线阅读 下载PDF
A multi-source image fusion algorithm based on gradient regularized convolution sparse representation
3
作者 WANG Jian QIN Chunxia +2 位作者 ZHANG Xiufei YANG Ke REN Ping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期447-459,共13页
Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational com... Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational complexity and neglecting the local features of an image,resulting in limited image detail retention and a high registration misalignment sensitivity.In order to overcome these shortcomings and the noise existing in the image of the fusion process,this paper proposes a new signal decomposition model,namely the multi-source image fusion algorithm of the gradient regularization convolution SR(CSR).The main innovation of this work is using the sparse optimization function to perform two-scale decomposition of the source image to obtain high-frequency components and low-frequency components.The sparse coefficient is obtained by the gradient regularization CSR model,and the sparse coefficient is taken as the maximum value to get the optimal high frequency component of the fused image.The best low frequency component is obtained by using the fusion strategy of the extreme or the average value.The final fused image is obtained by adding two optimal components.Experimental results demonstrate that this method greatly improves the ability to maintain image details and reduces image registration sensitivity. 展开更多
关键词 gradient regularization convolution sparse representation(CSR) image fusion
在线阅读 下载PDF
Mangrove monitoring and extraction based on multi-source remote sensing data:a deep learning method based on SAR and optical image fusion
4
作者 Yiheng Xie Xiaoping Rui +2 位作者 Yarong Zou Heng Tang Ninglei Ouyang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期110-121,共12页
Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aimin... Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems. 展开更多
关键词 image fusion SAR image optical image MANGROVE deep learning attention mechanism
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
5
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
An Infrared-Visible Image Fusion Network with Channel-Switching for Low-Light Object Detection
6
作者 Tianzhe Jiao Yuming Chen +2 位作者 Xiaoyue Feng Chaopeng Guo Jie Song 《Computers, Materials & Continua》 2025年第11期2681-2700,共20页
Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of vis... Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of visible and infrared images.However,the inherent differences in the imaging mechanisms of visible and infrared modalities make effective cross-modal fusion challenging.Furthermore,constrained by the physical characteristics of sensors and thermal diffusion effects,infrared images generally suffer from blurred object contours and missing details,making it difficult to extract object features effectively.To address these issues,we propose an infrared-visible image fusion network that realizesmultimodal information fusion of infrared and visible images through a carefully designedmultiscale fusion strategy.First,we design an adaptive gray-radiance enhancement(AGRE)module to strengthen the detail representation in infrared images,improving their usability in complex lighting scenarios.Next,we introduce a channelspatial feature interaction(CSFI)module,which achieves efficient complementarity between the RGB and infrared(IR)modalities via dynamic channel switching and a spatial attention mechanism.Finally,we propose a multi-scale enhanced cross-attention fusion(MSECA)module,which optimizes the fusion ofmulti-level features through dynamic convolution and gating mechanisms and captures long-range complementary relationships of cross-modal features on a global scale,thereby enhancing the expressiveness of the fused features.Experiments on the KAIST,M3FD,and FLIR datasets demonstrate that our method delivers outstanding performance in daytime and nighttime scenarios.On the KAIST dataset,the miss rate drops to 5.99%,and further to 4.26% in night scenes.On the FLIR and M3FD datasets,it achieves AP50 scores of 79.4% and 88.9%,respectively. 展开更多
关键词 Infrared-visible image fusion channel switching low-light object detection cross-attention fusion
在线阅读 下载PDF
Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion
7
作者 MA Ting WU Jianfang +2 位作者 HU Feng NIE Wei LIU Youxin 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期535-544,共10页
There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep ... There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed. 展开更多
关键词 capsule endoscopy image stitching intestinal wall image enhancement improved weighted fusion
原文传递
LLE-Fuse:Lightweight Infrared and Visible Light Image Fusion Based on Low-Light Image Enhancement
8
作者 Song Qian Guzailinuer Yiming +3 位作者 Ping Li Junfei Yang Yan Xue Shuping Zhang 《Computers, Materials & Continua》 2025年第3期4069-4091,共23页
Infrared and visible light image fusion technology integrates feature information from two different modalities into a fused image to obtain more comprehensive information.However,in low-light scenarios,the illuminati... Infrared and visible light image fusion technology integrates feature information from two different modalities into a fused image to obtain more comprehensive information.However,in low-light scenarios,the illumination degradation of visible light images makes it difficult for existing fusion methods to extract texture detail information from the scene.At this time,relying solely on the target saliency information provided by infrared images is far from sufficient.To address this challenge,this paper proposes a lightweight infrared and visible light image fusion method based on low-light enhancement,named LLE-Fuse.The method is based on the improvement of the MobileOne Block,using the Edge-MobileOne Block embedded with the Sobel operator to perform feature extraction and downsampling on the source images.The intermediate features at different scales obtained are then fused by a cross-modal attention fusion module.In addition,the Contrast Limited Adaptive Histogram Equalization(CLAHE)algorithm is used for image enhancement of both infrared and visible light images,guiding the network model to learn low-light enhancement capabilities through enhancement loss.Upon completion of network training,the Edge-MobileOne Block is optimized into a direct connection structure similar to MobileNetV1 through structural reparameterization,effectively reducing computational resource consumption.Finally,after extensive experimental comparisons,our method achieved improvements of 4.6%,40.5%,156.9%,9.2%,and 98.6%in the evaluation metrics Standard Deviation(SD),Visual Information Fidelity(VIF),Entropy(EN),and Spatial Frequency(SF),respectively,compared to the best results of the compared algorithms,while only being 1.5 ms/it slower in computation speed than the fastest method. 展开更多
关键词 Infrared images image fusion low-light enhancement feature extraction computational resource optimization
在线阅读 下载PDF
PromptFusion:Harmonized Semantic Prompt Learning for Infrared and Visible Image Fusion
9
作者 Jinyuan Liu Xingyuan Li +4 位作者 Zirui Wang Zhiying Jiang Wei Zhong Wei Fan Bin Xu 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期502-515,共14页
The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively han... The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion. 展开更多
关键词 Bi-level optimization image fusion infrared and visible image prompt learning
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
10
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Visible and near-infrared image fusion based on information complementarity
11
作者 Zhuo Li Shiliang Pu +2 位作者 Mengqi Ji Feng Zeng Bo Li 《CAAI Transactions on Intelligence Technology》 2025年第1期193-206,共14页
Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images ... Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity. 展开更多
关键词 color distortion image fusion information complementarity low light NEAR-INFRARED
在线阅读 下载PDF
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
12
作者 Naikang Zhong Xiao Lin +1 位作者 Wen Du Jin Shi 《Computers, Materials & Continua》 2025年第3期5285-5306,共22页
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat... Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification. 展开更多
关键词 image classification MULTI-LABEL multi scale attention mechanisms feature fusion
在线阅读 下载PDF
A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion
13
作者 Kezhen Xie Syed Mohd Zahid Syed Zainal Ariffin Muhammad Izzad Ramli 《Computers, Materials & Continua》 2025年第7期997-1011,共15页
Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing method... Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing methods often fail to distinguish salient objects from background regions,leading to detail suppression in salient regions due to global fusion strategies.This study presents a mask-guided latent low-rank representation fusion method to address this issue.First,the GrabCut algorithm is employed to extract a saliency mask,distinguishing salient regions from background regions.Then,latent low-rank representation(LatLRR)is applied to extract deep image features,enhancing key information extraction.In the fusion stage,a weighted fusion strategy strengthens infrared thermal information and visible texture details in salient regions,while an average fusion strategy improves background smoothness and stability.Experimental results on the TNO dataset demonstrate that the proposed method achieves superior performance in SPI,MI,Qabf,PSNR,and EN metrics,effectively preserving salient target details while maintaining balanced background information.Compared to state-of-the-art fusion methods,our approach achieves more stable and visually consistent fusion results.The fusion code is available on GitHub at:https://github.com/joyzhen1/Image(accessed on 15 January 2025). 展开更多
关键词 Infrared and visible image fusion latent low-rank representation saliency mask extraction weighted fusion strategy
在线阅读 下载PDF
An EnFCM remote sensing image forest land extraction method based on PCA multi-feature fusion
14
作者 ZHU Shengyang WANG Xiaopeng +2 位作者 WEI Tongyi FAN Weiwei SONG Yubo 《Journal of Measurement Science and Instrumentation》 2025年第2期216-223,共8页
The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland im... The traditional EnFCM(Enhanced fuzzy C-means)algorithm only considers the grey-scale features in image segmentation,resulting in less than satisfactory results when the algorithm is used for remote sensing woodland image segmentation and extraction.An EnFCM remote sensing forest land extraction method based on PCA multi-feature fusion was proposed.Firstly,histogram equalization was applied to improve the image contrast.Secondly,the texture and edge features of the image were extracted,and a multi-feature fused pixel image was generated using the PCA technique.Moreover,the fused feature was used as a feature constraint to measure the difference of pixels instead of a single grey-scale feature.Finally,an improved feature distance metric calculated the similarity between the pixel points and the cluster center to complete the cluster segmentation.The experimental results showed that the error was between 1.5%and 4.0%compared with the forested area counted by experts’hand-drawing,which could obtain a high accuracy segmentation and extraction result. 展开更多
关键词 image segmentation forest land extraction PCA transform multi-feature fusion EnFCM algorithm
在线阅读 下载PDF
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
15
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
Multimodal medical image fusion based on mask optimization and parallel attention mechanism
16
作者 DI Jing LIANG Chan +1 位作者 GUO Wenqing LIAN Jing 《Journal of Measurement Science and Instrumentation》 2025年第1期26-36,共11页
Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability... Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability to fully extract fused image information.Therefore,a multimodal medical image fusion method based on mask optimization and parallel attention mechanism was proposed to address the aforementioned issues.Firstly,it converted the entire image into a binary mask,and constructed a contour feature map to maximize the contour feature information of the image and a triple path network for image texture detail feature extraction and optimization.Secondly,a contrast enhancement module and a detail preservation module were proposed to enhance the overall brightness and texture details of the image.Afterwards,a parallel attention mechanism was constructed using channel features and spatial feature changes to fuse images and enhance the salient information of the fused images.Finally,a decoupling network composed of residual networks was set up to optimize the information between the fused image and the source image so as to reduce information loss in the fused image.Compared with nine high-level methods proposed in recent years,the seven objective evaluation indicators of our method have improved by 6%−31%,indicating that this method can obtain fusion results with clearer texture details,higher contrast,and smaller pixel differences between the fused image and the source image.It is superior to other comparison algorithms in both subjective and objective indicators. 展开更多
关键词 multimodal medical image fusion binary mask contrast enhancement module parallel attention mechanism decoupling network
在线阅读 下载PDF
Fusion method for water depth data from multiple sources based on image recognition
17
作者 Huiyu HAN Feng ZHOU 《Journal of Oceanology and Limnology》 2025年第4期1093-1105,共13页
Considering the difficulty of integrating the depth points of nautical charts of the East China Sea into a global high-precision Grid Digital Elevation Model(Grid-DEM),we proposed a“Fusion based on Image Recognition(... Considering the difficulty of integrating the depth points of nautical charts of the East China Sea into a global high-precision Grid Digital Elevation Model(Grid-DEM),we proposed a“Fusion based on Image Recognition(FIR)”method for multi-sourced depth data fusion,and used it to merge the electronic nautical chart dataset(referred to as Chart2014 in this paper)with the global digital elevation dataset(referred to as Globalbath2002 in this paper).Compared to the traditional fusion of two datasets by direct combination and interpolation,the new Grid-DEM formed by FIR can better represent the data characteristics of Chart2014,reduce the calculation difficulty,and be more intuitive,and,the choice of different interpolation methods in FIR and the influence of the“exclusion radius R”parameter were discussed.FIR avoids complex calculations of spatial distances among points from different sources,and instead uses spatial exclusion map to perform one-step screening based on the exclusion radius R,which greatly improved the fusion status of a reliable dataset.The fusion results of different experiments were analyzed statistically with root mean square error and mean relative error,showing that the interpolation methods based on Delaunay triangulation are more suitable for the fusion of nautical chart depth of China,and factors such as the point density distribution of multiple source data,accuracy,interpolation method,and various terrain conditions should be fully considered when selecting the exclusion radius R. 展开更多
关键词 water depth fusion method Grid Digital Elevation Model(Grid-DEM) image recognition Delaunay triangulation
在线阅读 下载PDF
RFLE-Net:Refined Feature Extraction and Low-Loss Feature Fusion Method in Semantic Segmentation of Medical Images
18
作者 Fan Zhang Zihao Zhang +5 位作者 Huifang Hou Yale Yang Kangzhan Xie Chao Fan Xiaozhen Ren Quan Pan 《Journal of Bionic Engineering》 2025年第3期1557-1572,共16页
The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions... The application of transformer networks and feature fusion models in medical image segmentation has aroused considerable attention within the academic circle.Nevertheless,two main obstacles persist:(1)the restrictions of the Transformer network in dealing with locally detailed features,and(2)the considerable loss of feature information in current feature fusion modules.To solve these issues,this study initially presents a refined feature extraction approach,employing a double-branch feature extraction network to capture complex multi-scale local and global information from images.Subsequently,we proposed a low-loss feature fusion method-Multi-branch Feature Fusion Enhancement Module(MFFEM),which realizes effective feature fusion with minimal loss.Simultaneously,the cross-layer cross-attention fusion module(CLCA)is adopted to further achieve adequate feature fusion by enhancing the interaction between encoders and decoders of various scales.Finally,the feasibility of our method was verified using the Synapse and ACDC datasets,demonstrating its competitiveness.The average DSC(%)was 83.62 and 91.99 respectively,and the average HD95(mm)was reduced to 19.55 and 1.15 respectively. 展开更多
关键词 Multi-organ medical image segmentation Fine-grained dual branch feature extractor Low-Loss feature fusion module
在线阅读 下载PDF
Low-light image enhancement based on multi-illumination estimation and multi-scale fusion
19
作者 ZHANG Xin'ai GAO Jing +1 位作者 NIE Kaiming LUO Tao 《Optoelectronics Letters》 2025年第6期362-369,共8页
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat... To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively. 展开更多
关键词 adaptive detail preserving s curve contrast limited adaptive histogram equalization adaptive complementary gamma function low light image enhancement equalization clahe adaptive complementary gamma function acg multi scale fusion weight maps multi illumination estimation
原文传递
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
20
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix multi-source remote sensing image registration CONTOURLET transform
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部