期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
1
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
2
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
A Software Defect Prediction Method Using a Multivariate Heterogeneous Hybrid Deep Learning Algorithm
3
作者 Qi Fei Haojun Hu +1 位作者 Guisheng Yin Zhian Sun 《Computers, Materials & Continua》 2025年第2期3251-3279,共29页
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti... Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction. 展开更多
关键词 Software defect prediction multiple heterogeneous data graph convolutional network models based on adjacency and spatial topologies CNN-BiLSTM TabNet
在线阅读 下载PDF
Multi-Source Spatial Data Distribution Model and System Implementation
4
作者 Jing Liu Xiancheng Mao 《Communications and Network》 2013年第1期93-98,共6页
The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on th... The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized. 展开更多
关键词 multi-source spatial data DISTRIBUTION Model WEBGIS MAPGIS K9
在线阅读 下载PDF
Effect of human settlements on urban thermal environment and factor analysis based on multi-source data:A case study of Changsha city 被引量:5
5
作者 XIONG Ying ZHANG Fang 《Journal of Geographical Sciences》 SCIE CSCD 2021年第6期819-838,共20页
In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved b... In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements. 展开更多
关键词 thermal environment natural-human factor multi-source data spatial PCA Changsha city
原文传递
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
6
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 spatial heterogeneity spatial data Feature Selection STANDARDIZATION Machine Learning Models Hybrid Models
在线阅读 下载PDF
Utilizing Multi-source Data Fusion to Identify the Layout Patterns of the Catering Industry and Urban Spatial Structure in Shanghai,China
7
作者 TIAN Chuang LUAN Weixin 《Chinese Geographical Science》 2025年第5期1045-1058,共14页
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron... Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions. 展开更多
关键词 multi-source data fusion urban spatial structure multi-center catering industry Shanghai China
在线阅读 下载PDF
Spatial data mining system for ore-forming prediction 被引量:1
8
作者 Man WANG Linfu XUE Yingwei WANG 《Global Geology》 2007年第1期100-104,共5页
The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geo... The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined. 展开更多
关键词 ore-forming prediction spatial data mining multi-source geoscience data
在线阅读 下载PDF
顾及地理空间特性的空间面板数据可预测性评估理论与方法
9
作者 邓敏 彭翀 谌恺祺 《测绘学报》 北大核心 2025年第7期1305-1317,共13页
空间面板数据具有空间和时间维度信息规整的特点,常用于地理现象时空演化过程的记录,是时空预测研究的主流数据结构。特别是在以神经网络为核心的人工智能时代,空间面板数据无须额外处理,便可输入卷积网络、循环网络等智能化模型,具有... 空间面板数据具有空间和时间维度信息规整的特点,常用于地理现象时空演化过程的记录,是时空预测研究的主流数据结构。特别是在以神经网络为核心的人工智能时代,空间面板数据无须额外处理,便可输入卷积网络、循环网络等智能化模型,具有信息无损与计算便捷的优势,常用于人类活动、交通出行等领域的预测研究。然而,现有研究聚焦模型方法的提升,忽视了空间面板数据可预测性的理论研究。统计学等领域有基于熵的可预测性理论,广泛用于时间序列分析,但忽视了空间面板数据中空间依赖、空间异质与地理相似等地理空间特性的影响,导致评估结果不准。对此,本文顾及地理空间特性,提出邻域转移熵、交叉空间熵与交叉区域熵在内的地理熵理论与方法,从特征学习、参数训练、应用测试的不同环节,定量评估空间面板数据的可预测性,为时空预测研究中空间邻域学习、局部模型构建与迁移泛化策略提供理论依据。 展开更多
关键词 可预测性 空间面板数据 空间依赖性 空间异质性 地理相似性
在线阅读 下载PDF
基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算 被引量:5
10
作者 郝琪 陈天陆 +4 位作者 王富贵 王振 白岚方 王永强 王志刚 《作物学报》 CAS 北大核心 2025年第1期189-206,共18页
作物冠层氮素营养的遥感诊断对指导作物精准施氮,提高作物氮效率和产量具有重要意义。本研究针对玉米冠层纵深大影响无人机估算氮浓度精度的问题,基于2022年和2023年不同氮肥运筹处理下田间无人机多光谱数据和氮浓度实测数据,分析玉米... 作物冠层氮素营养的遥感诊断对指导作物精准施氮,提高作物氮效率和产量具有重要意义。本研究针对玉米冠层纵深大影响无人机估算氮浓度精度的问题,基于2022年和2023年不同氮肥运筹处理下田间无人机多光谱数据和氮浓度实测数据,分析玉米冠层氮浓度空间分布特征,并利用随机森林算法确定估算冠层氮浓度的有效叶层。进一步结合随机森林算法和多光谱植被指数构建有效叶层氮浓度估算模型,最终将有效叶层氮浓度转换到冠层尺度实现冠层氮浓度的估算。结果表明:(1)九叶展期和大喇叭口期玉米冠层氮浓度表现为上层叶片>中层叶片>下层叶片,吐丝期和乳熟期表现为中层叶片>上层叶片>下层叶片。(2)各时期估算冠层氮浓度的有效叶层分别为下层、中层、中层和中层。与支持向量回归模型相比,随机森林回归估算冠层氮浓度的精度较高。(3)结合随机森林算法,基于有效叶层氮浓度估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.10%、4.41%和0.07%,而直接基于植被指数估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.19%、9.00%和0.15%。综上,玉米冠层氮浓度存在空间分异特征,估算冠层氮浓度时考虑基于随机森林和植被指数估算的有效叶层氮浓度能明显提高冠层氮浓度的估算精度。本研究确定的考虑空间分异的冠层氮浓度估算框架可为玉米氮素营养实时诊断提供理论支撑。 展开更多
关键词 玉米 冠层氮浓度 氮素空间分异 多光谱数据 机器学习
在线阅读 下载PDF
COVID-19背景下深圳市职住平衡多尺度时空演化特征及影响因素
11
作者 段利鹏 辜智慧 +1 位作者 张艳 刘倩 《热带地理》 北大核心 2025年第1期102-112,共11页
文章基于2017—2022年手机信令数据,利用数据可视化、就业活动紧凑度和多元Logistic回归模型,探讨了COVID-19背景下深圳市职住关系多尺度演化特征及其成因。结果表明:1)就业和居住空间格局在COVID-19大流行前、大流行后严格管控期和常... 文章基于2017—2022年手机信令数据,利用数据可视化、就业活动紧凑度和多元Logistic回归模型,探讨了COVID-19背景下深圳市职住关系多尺度演化特征及其成因。结果表明:1)就业和居住空间格局在COVID-19大流行前、大流行后严格管控期和常态化期经历了集聚—扩散—第一圈层持续扩散而第二、三圈层回弹的演变过程;2)职住平衡1、2和3 km栅格尺度纵向演化在COVID-19大流行前均有所恶化,而在疫情期间总体上稳步改善,其中以1 km栅格尺度表现得最为显著;3)空间异质性影响了疫情前后不同背景下的就业和居住关系演化趋势,其中公共交通可达性和居民社会经济特征是导致演化类型分异的主要原因。 展开更多
关键词 职住平衡 COVID-19大流行 空间异质性 演化分异 多尺度 手机信令数据 深圳
在线阅读 下载PDF
城市路面性能分布空间异质性解析及差异化养护分区研究
12
作者 高倩 杜豫川 +3 位作者 刘成龙 李亦舜 吴荻非 李峰 《中国公路学报》 北大核心 2025年第2期85-101,共17页
受土地利用、道路养护等因素影响,城市中路面性能的分布呈现出显著的空间异质性。了解城市路面性能空间分布的差异及其成因,对于养护资源配置和养护计划制定具有重要意义。区别于已有研究主要关注气候等自然因素对路面性能衰变的影响,... 受土地利用、道路养护等因素影响,城市中路面性能的分布呈现出显著的空间异质性。了解城市路面性能空间分布的差异及其成因,对于养护资源配置和养护计划制定具有重要意义。区别于已有研究主要关注气候等自然因素对路面性能衰变的影响,所提研究着重探究人类活动作用下,城市路面性能分布空间异质性的影响因素和特点,并进一步划分差异化的日常养护分区。基于每周更新的细粒度路面性能数据,利用地理探测器模型,识别出影响路面性能分布的关键因素及其交互作用;进而根据识别的显著因素,采用两阶段聚类方法分析,划分出具有不同空间分布特点的4类路段以及相应的养护分区。研究结果表明:人为因素如养护次数和交通设施,对路面性能分布的空间异质性有显著影响,各因素之间的交互作用能够大幅增强其对路面性能空间分布的解释性;根据显著影响因素的路段划分结果较好地表征了各路段的空间分布特点,以及其造成的不同养护需求,支持差异化养护分区的划分。研究结论可为制定数据驱动的科学养护决策提供支持,帮助优化有限的养护资源配置,提高养护效率和有效性。 展开更多
关键词 路面工程 空间异质性 地理探测器 差异化养护分区 城市路面性能 细粒度数据
原文传递
融合地面沉降因素的沿海城市生态安全格局识别——基于深度学习的珠海市案例研究
13
作者 袁少雄 宫清华 +4 位作者 叶玉瑶 王钧 郝银磊 张雅泽 刘博文 《热带地理》 北大核心 2025年第4期673-690,共18页
快速城市化与地质灾害频发对区域生态安全构成挑战。传统生态安全格局(ESP)构建方法较少考虑地面沉降等垂直地质因素,这可能导致沿海城市生态功能区划不合理和生态系统服务功能的降低。文章以珠海市为例,探索了地面沉降因素对生态安全... 快速城市化与地质灾害频发对区域生态安全构成挑战。传统生态安全格局(ESP)构建方法较少考虑地面沉降等垂直地质因素,这可能导致沿海城市生态功能区划不合理和生态系统服务功能的降低。文章以珠海市为例,探索了地面沉降因素对生态安全格局构建的影响机制。采用多层感知器(MLP)深度学习模型进行ESP预测,结合加权平均、非线性融合、信息熵和主成分分析等多源数据融合方法进行格局分类和效果评估。结果显示,MLP模型的平均预测准确率达84.5%。空间分析揭示了地面沉降对ESP的影响存在显著空间异质性,中等历史沉降区(8~41 mm/a)表现出最显著影响。源地区和建设区域分别有7.14%和9.84%的区域表现为轻微沉降(2~8 mm/a),应作为重点监测与管理区域。不同融合方法在识别特定功能区域方面表现各异:主成分分析(前2个主成分分别解释了27.1%和19.8%的方差)和信息熵方法在识别建设区和廊道区方面表现优异,而非线性融合在源地区识别方面具有优势。通过整合地面沉降监测数据和多源数据融合方法,文章为沿海城市ESP优化提供了方法学参考,辅助识别了以沿海湿地和河口系统为核心的珠海市生态安全格局。研究表明,在地面沉降约束下协调生态保护、灾害防治与城市发展是可行的。未来研究应重点关注高分辨率时空数据的应用、算法优化,以及研究成果向城市规划和生态管理政策的高效转化机制。 展开更多
关键词 生态安全格局 深度学习 地面沉降 多源数据融合 空间异质性 珠海市
在线阅读 下载PDF
基于生产要素整合管理要素的多源异构数据处理方法
14
作者 胡永琪 段杰 +3 位作者 卢文龙 郝蕊 范文娜 张艳荣 《山西建筑》 2025年第18期184-187,193,共5页
铁路行业信息化系统普遍存在“数据孤岛”问题,现有的多源异构数据融合方法适用数据结构类型有限。文中提出基于生产业务要素实现管理业务要素整合的多源异构数据汇集,在项目空间维度进行数据融合的方法。具体通过统一各专业分部分项工... 铁路行业信息化系统普遍存在“数据孤岛”问题,现有的多源异构数据融合方法适用数据结构类型有限。文中提出基于生产业务要素实现管理业务要素整合的多源异构数据汇集,在项目空间维度进行数据融合的方法。具体通过统一各专业分部分项工程及空间维度标准,构建空间维度模型明确其与分部分项工程映射关系以按需融合数据,依据构建模型提取填充施工信息并基于生产业务要素采用工程量法、里程碑算法、产值比例法计算管理业务要素,为铁路行业数据共享与高效应用提供有效途径,助力解决信息孤岛困境,提升项目管理效率与资源分配合理性。 展开更多
关键词 数据融合 空间维度模型 多源异构 标准划分 铁路信息化
在线阅读 下载PDF
大规模新能源场站中海量多源异构空间数据集成研究
15
作者 张荣达 何益 +3 位作者 孙佟萌 赵峥 高航 焦波 《信息技术》 2025年第10期154-159,共6页
由于缺乏数据权值的动态分配处理,导致海量多源异构空间数据集成效果差。为此,提出大规模新能源场站中海量多源异构空间数据集成方法。根据多源异构空间数据类型对数据集进行划分,构建语义相似度矩阵,计算多源异构空间数据在不同数据属... 由于缺乏数据权值的动态分配处理,导致海量多源异构空间数据集成效果差。为此,提出大规模新能源场站中海量多源异构空间数据集成方法。根据多源异构空间数据类型对数据集进行划分,构建语义相似度矩阵,计算多源异构空间数据在不同数据属性下的相似度。依据分类概念及数据属性的动态变化特征,计算数据实体匹配过程中的数据权值,完成多源异构数据权值动态自适应分配。引入莫兰指数,判定多源异构数据序列,构建集成函数,实现数据集成。实验结果表明,提出方法的F-测试值较高,具有较好的数据集成效果。 展开更多
关键词 大规模 新能源场站 海量多源异构 空间数据集成 F-测试值
在线阅读 下载PDF
上海城市公园绿地生境质量评价与优化策略研究
16
作者 秦沛金 《绿色科技》 2025年第17期21-26,72,共7页
城市公园绿地是城市生态系统的重要组成部分,其生境质量对生物多样性维持及生态服务功能发挥至关重要。然而,当前针对城市公园绿地的生境质量评价体系尚不完善,难以精准反映不同公园的生态差异。以上海市6个典型城市公园为研究对象,基... 城市公园绿地是城市生态系统的重要组成部分,其生境质量对生物多样性维持及生态服务功能发挥至关重要。然而,当前针对城市公园绿地的生境质量评价体系尚不完善,难以精准反映不同公园的生态差异。以上海市6个典型城市公园为研究对象,基于无人机遥感数据(正射影像、激光雷达点云及多光谱数据),构建了一套适用于城市公园绿地的生境质量评价体系,并探讨了不同公园的生境特征及优化策略。结果表明,不同公园的生境类型与生境质量水平存在显著差异,其中沔青公园的单位面积生境质量最高,而徐汇跑道公园最低。基于评价结果,提出了针对不同公园的优化策略,包括增加常绿密林生境、优化广场区域的植被配置、减少人为干扰以及增强生境连通性等,以提升公园绿地的生态质量与生物多样性。可为城市公园绿地的生态规划、管理与优化提供科学依据,促进城市生态环境的可持续发展。 展开更多
关键词 城市公园绿地 生境质量评价 多源遥感数据 生态优化 空间异质性
在线阅读 下载PDF
基于“十字”标志物的红外图像与三维点云融合方法 被引量:1
17
作者 郑叶龙 李长勇 +3 位作者 夏宁宁 李玲一 张国民 赵美蓉 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第10期1090-1099,共10页
红外热成像技术广泛应用于多个领域,建立含有空间和温度信息的三维温度场模型具有十分重要的意义,可以将该技术扩展到更多应用领域.为此,本文提出一种异源空间数据融合方法,融合红外图像和三维点云,得到三维温度场模型.针对红外相机与... 红外热成像技术广泛应用于多个领域,建立含有空间和温度信息的三维温度场模型具有十分重要的意义,可以将该技术扩展到更多应用领域.为此,本文提出一种异源空间数据融合方法,融合红外图像和三维点云,得到三维温度场模型.针对红外相机与可见光相机成像原理存在差异,难以通过常用标定板进行内参标定的问题,基于红外相机成像特性设计并制作镂空圆孔标定板用于内参标定,所得内参平均重投影误差为0.03像素.针对红外相机与结构光相机的成像原理不同,现有标志物制作复杂、外参精度低的问题,基于不同材料的辐射度差异,设计制作“十字”标志物并将其用于联合标定.为解决同名特征点难以识别的问题,针对红外图像和三维点云分别设计了同名特征点提取方法,配合“十字”标志物进行同名特征点提取.红外图像和三维点云特征点提取方法的检测重复率分别为75%和92%,与传统方法相比两者的检测重复率均有所提升.利用该方法建立纸杯、工件和人脸的三维温度场模型.实验结果表明,使用镂空圆孔标定板能实现红外相机的内参标定,对“十字”标志物采用同名特征点提取方法能完成红外相机与结构光相机的联合标定.最终所得三维温度场模型的平均重投影误差为1.70像素,与现有方法相比模型精度有所提升. 展开更多
关键词 红外图像 三维点云 标志物 同名特征点 系统标定 异源空间数据融合
在线阅读 下载PDF
多源大数据支撑下的城市交通拥堵驱动力研究 被引量:3
18
作者 冯心怡 刘亦婷 +3 位作者 肖智雄 俞艳 张宸赫 程雨森 《地理空间信息》 2024年第7期36-40,67,共6页
利用手机信令数据、高德实时交通态势数据、POI数据等多源大数据,以宁波市拥堵核心区域为研究单元,对比了普通最小二乘法回归模型、经典地理加权回归模型、多尺度地理加权回归(MGWR)模型的精度;并选用最优模型定量探究了宁波市拥堵核心... 利用手机信令数据、高德实时交通态势数据、POI数据等多源大数据,以宁波市拥堵核心区域为研究单元,对比了普通最小二乘法回归模型、经典地理加权回归模型、多尺度地理加权回归(MGWR)模型的精度;并选用最优模型定量探究了宁波市拥堵核心区不同时段的交通拥堵驱动力。结果表明:①MGWR模型对交通拥堵驱动力的拟合效果较好,且能反映不同驱动力间的空间异质性;②实时人口密度、路网密度、土地利用混合度、职住平衡指数对交通拥堵影响存在时空分异,公司分布密度对交通拥堵影响存在圈层性。研究结果可为大数据在交通拥堵领域的应用提供一定参考,为管理者分析交通拥堵根源提供依据。 展开更多
关键词 多源数据 交通拥堵 空间异质性 MGWR
在线阅读 下载PDF
特大山地城市活力空间分布特征及其与土地利用的相关性研究——以重庆市中心城区为例 被引量:1
19
作者 潘捷 李斌 钱焱杰 《干旱区资源与环境》 CSSCI CSCD 北大核心 2024年第9期76-86,共11页
城市活力是城市高质量发展的重要动力,优化城市土地利用对于提升城市活力至关重要。文中以重庆中心城区为例,以百度人口热力数据表征城市活力,采集兴趣点、建筑和路网矢量数据、夜间灯光数据、社会经济数据等多源大数据,采用热点分析、... 城市活力是城市高质量发展的重要动力,优化城市土地利用对于提升城市活力至关重要。文中以重庆中心城区为例,以百度人口热力数据表征城市活力,采集兴趣点、建筑和路网矢量数据、夜间灯光数据、社会经济数据等多源大数据,采用热点分析、最小二乘法回归(OLS)与地理加权回归(GWR)模型,探究城市活力的空间特征及其与土地利用功能类型、强度和混合度的相关性。研究发现:1)作为典型的特大山地城市,重庆中心城区活力呈现出内环以内和外围次级组团中心高值集中、外围地区较低的空间格局,活力分布存在明显的空间异质性。2)土地利用功能类型维度,在内环以内和人口集聚区,各功能类型设施的集聚能显著提升城市活力水平,而在边缘区域表现不明显。3)土地利用强度维度,提升路网密度、基础设施完善度有助于全局活力提升,而建筑密度则因区位对活力产生促进或抑制的双重作用。4)土地利用混合度维度,较高的功能混合度在组团中心能促进活力提升,但在外围地区并不明显。针对特大山地城市的活力空间格局优化,应提升土地利用效率,科学引导功能布局;加强各组团间的土地功能衔接;构建各组团差异化的土地利用策略,结合山地特色,营造与山地环境相协调的人居场景。 展开更多
关键词 城市活力 土地利用 多源数据 地理加权回归 空间异质性
原文传递
数据空间域传播学理论的系统转向与重构 被引量:2
20
作者 田菊 《系统科学学报》 CSSCI 北大核心 2024年第1期44-48,共5页
本文以数据空间为研究对象,将数据空间置于传播学理论视角下进行研究,从系统哲学向度对信息空间的超越、数据空间传播视角的多维特征到解构数据空间传播功能三个维度内容进行了梳理,重点对数据空间从一般的传播学理论升华到哲学层面的关... 本文以数据空间为研究对象,将数据空间置于传播学理论视角下进行研究,从系统哲学向度对信息空间的超越、数据空间传播视角的多维特征到解构数据空间传播功能三个维度内容进行了梳理,重点对数据空间从一般的传播学理论升华到哲学层面的关照,从剖析数据空间的本质重构数据空间传播的最新范式和研究意义。 展开更多
关键词 数据空间 传播学 空间转向 空间异构
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部