With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on th...The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized.展开更多
In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved b...In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.展开更多
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti...Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.展开更多
The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geo...The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined.展开更多
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap ...The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas.展开更多
Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emissi...Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.展开更多
As a product of the deep integration between next-generation information technology and industrial systems,digital twin technology has demonstrated significant advantages in real-time monitoring,predictive maintenance...As a product of the deep integration between next-generation information technology and industrial systems,digital twin technology has demonstrated significant advantages in real-time monitoring,predictive maintenance,and optimization decision-making for thermal power plants.To address challenges such as low equipment efficiency,high maintenance costs,and difficulties in safety risk management in traditional thermal power plants,this study developed a digital twin simulation system that covers the entire lifecycle of power generation units.The system achieves real-time collection and processing of critical parameters such as temperature,pressure,and flow rate through a collaborative architecture integrating multi-source heterogeneous sensor networks with Programmable Logic Controllers(PLCs).A three-tier processing framework handles data preprocessing,feature extraction,and intelligent analysis,while establishing a hybrid storage system combining time-series databases and relational databases to enable millisecond-level queries and data traceability.The simulation model development module employs modular design methodology,integrating multi-physics coupling algorithms including computational fluid dynamics(CFD)and thermal circulation equations.Automated parameter calibration is achieved through intelligent optimization algorithms,with model accuracy validated via unitlevel verification,system-level cascaded debugging tests,and virtual test platform simulations.Based on the modular layout strategy,the user interface and interaction module integrates 3D plant panoramic view,dynamic equipment model and multi-mode interaction channel,supports cross-terminal adaptation of PC,mobile terminal and control screen,and improves fault handling efficiency through AR assisted diagnosis function.展开更多
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
文摘The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized.
基金National Social Science Foundation of China,No.15BJY051Open Topic of Hunan Key Laboratory of Land Resources Evaluation and Utilization,No.SYS-ZX-202002Research Project of Appraisement Committee of Social Sciences Research Achievements of Hunan Province,No.XSP18ZDI031。
文摘In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.
文摘Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.
文摘The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined.
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
基金National Natural Science Foundation of China(No.42101346)Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University(GeoAI Special Project)(No.202510486196).
文摘The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas.
基金The National Key Research and Development Program of China(2019YFD1100803)。
文摘Carbon emissions caused by human activities are closely related to the process of urbanization,and urban land utilization,function vitality and traffic systems are three important factors that may influence the emission levels.For clarifying the space structure of a low-carbon eco-city,and combining the concept of"Combining Assessment with Construction"to track and contrast the construction of the low-carbon eco-city,this research selects quantifiable low-carbon eco-city spatial characteristics as indicators,and evaluates and analyzes the potential carbon emissions.Taking the Jinan Western New District as an example,diversity of construction land,travel carbon emission potential,and density and accessibility of adjacent road networks in the overall urban planning were measured.After the completion of the new urban area,the evaluation mainly reflected certain factors,such as the mixed degree of urban functions,the density of urban functions,the walking distance to bus stops and the density and number of bus stops.Dividing the levels and adding equal weights after index normalization,the carbon emission potential is evaluated at the two levels of the overall and fragmented areas.The results show that:(1)The low-carbon emission potential areas in the planning scheme basically reached the planned goals.(2)There is inconsistency between districts and indicators in the planning scheme.The diversity of construction land and the accessibility of the adjacent road network are relatively small;however,there is a large difference between the travel carbon emission potential and the road network accessibility.(3)Carbon emission potential after completion did not reach the planned expectation,and the low-carbon emission potential plots were concentrated in the Changqing Old City Area and Central Area of Dangjia Town Area.(4)The carbon emission indicators varied greatly in different areas,and there were serious imbalances in the density of public transportation lines and the mixed degree of urban functions.
文摘As a product of the deep integration between next-generation information technology and industrial systems,digital twin technology has demonstrated significant advantages in real-time monitoring,predictive maintenance,and optimization decision-making for thermal power plants.To address challenges such as low equipment efficiency,high maintenance costs,and difficulties in safety risk management in traditional thermal power plants,this study developed a digital twin simulation system that covers the entire lifecycle of power generation units.The system achieves real-time collection and processing of critical parameters such as temperature,pressure,and flow rate through a collaborative architecture integrating multi-source heterogeneous sensor networks with Programmable Logic Controllers(PLCs).A three-tier processing framework handles data preprocessing,feature extraction,and intelligent analysis,while establishing a hybrid storage system combining time-series databases and relational databases to enable millisecond-level queries and data traceability.The simulation model development module employs modular design methodology,integrating multi-physics coupling algorithms including computational fluid dynamics(CFD)and thermal circulation equations.Automated parameter calibration is achieved through intelligent optimization algorithms,with model accuracy validated via unitlevel verification,system-level cascaded debugging tests,and virtual test platform simulations.Based on the modular layout strategy,the user interface and interaction module integrates 3D plant panoramic view,dynamic equipment model and multi-mode interaction channel,supports cross-terminal adaptation of PC,mobile terminal and control screen,and improves fault handling efficiency through AR assisted diagnosis function.