期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
New Method of Multi-Source Heterogeneous Data Signal Processing of Power Internet of Things Based on Compressive Sensing
1
作者 Li Yongjie Shen Jing +3 位作者 Zang Huaping Hou Huanpeng Yang Yimu Yao Haoyu 《China Communications》 2025年第11期242-255,共14页
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot... In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity. 展开更多
关键词 compressive sensing heterogeneous power internet of things multi-source heterogeneous signal reconstruction
在线阅读 下载PDF
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
2
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Multi-Source Heterogeneous Data Fusion Analysis Platform for Thermal Power Plants
3
作者 Jianqiu Wang Jianting Wen +1 位作者 Hui Gao Chenchen Kang 《Journal of Architectural Research and Development》 2025年第6期24-28,共5页
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter... With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%. 展开更多
关键词 Thermal power plant multi-source heterogeneous data Data fusion analysis platform Edge computing
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
4
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
5
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality Tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
在线阅读 下载PDF
A global multimodal flood event dataset with heterogeneous text and multi-source remote sensing images
6
作者 Zhixin Zhang Yan Ma Peng Liu 《Big Earth Data》 2025年第3期362-388,共27页
With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event... With the increasing frequency of floods,in-depth flood event analyses are essential for effective disaster relief and prevention.Satellite-based flood event datasets have become the primary data source for flood event analyses instead of limited disaster maps due to their enhanced availability.Nevertheless,despite the vast amount of available remote sensing images,existing flood event datasets continue to pose significant challenges in flood event analyses due to the uneven geographical distribution of data,the scarcity of time series data,and the limited availability of flood-related semantic information.There has been a surge in acceptance of deep learning models for flood event analyses,but some existing flood datasets do not align well with model training,and distinguishing flooded areas has proven difficult with limited data modalities and semantic information.Moreover,efficient retrieval and pre-screening of flood-related imagery from vast satellite data impose notable obstacles,particularly within large-scale analyses.To address these issues,we propose a Multimodal Flood Event Dataset(MFED)for deep-learning-based flood event analyses and data retrieval.It consists of 18 years of multi-source remote sensing imagery and heterogeneous textual information covering flood-prone areas worldwide.Incorporating optical and radar imagery can exploit the correlation and complementarity between distinct image modalities to capture the pixel features in flood imagery.It is worth noting that text modality data,including auxiliary hydrological information extracted from the Global Flood Database and text information refined from online news records,can also offer a semantic supplement to the images for flood event retrieval and analysis.To verify the applicability of the MFED in deep learning models,we carried out experiments with different models using a single modality and different combinations of modalities,which fully verified the effectiveness of the dataset.Furthermore,we also verify the efficiency of the MFED in comparative experiments with existing multimodal datasets and diverse neural network structures. 展开更多
关键词 Flood event multimodal dataset deep learning multi-source remote sensing data internet data
原文传递
Integrating categorical and standard triple collocation to improve precipitation fusion over the five largest freshwater lakes in China
7
作者 LI Lingjie TANG Guoqiang +4 位作者 WANG Yintang GAO Rui LIU Yong ZHAO Wenpeng CHEN Cheng 《Journal of Geographical Sciences》 2025年第11期2378-2412,共35页
The sparsity of ground gauges poses a significant challenge for evaluating and merging satellite-based and reanalysis-based precipitation datasets in lake regions.While the standard triple collocation(TC)method offers... The sparsity of ground gauges poses a significant challenge for evaluating and merging satellite-based and reanalysis-based precipitation datasets in lake regions.While the standard triple collocation(TC)method offers a solution without access to ground-based observations,it fails to address rain/no-rain classification and its suitability for assessing and merging lake precipitation has not been explored.This study combines categorical triple collocation(CTC)with standard TC to create an integrated framework(CTC-TC)tailored to evaluate and merge global gridded precipitation products(GPPs).We assess the efficacy of CTC-TC using six GPPs(ERA5-Land,SM2 RAIN-ASCAT,IMERG-Early,IMERG-Late,GSMaPMVK,and PERSIANN-CCS)across the five largest freshwater lakes in China.CTC-TC effectively captures the spatial patterns of metrics for all GPPs,and precisely estimates the correlation coefficient and root mean square error for satellite-based datasets apart from SM2 RAIN-ASCAT,but overestimates the classification accuracy indicator V for all GPPs.Regarding multi-source fusion,CTC-TC leverages the strengths of individual products of triplets,resulting in significant improvements in the critical success index(CSI)by over 11.9%and the modified Kling-Gupta efficiency(KGE')by more than 13.3%.Compared to baseline models,including standard TC,simple model averaging,one outlier removal,and Bayesian model averaging,CTC-TC achieves gains in CSI and KGE'of no less than 24.7%and 3.6%,respectively.In conclusion,the CTC-TC framework offers a thorough evaluation and efficient fusion of GPPs,addressing both categorical and continuous accuracy in data-scarce regions such as lakes. 展开更多
关键词 categorical triple collocation triple collocation lake gridded precipitation datasets accuracy assessment multi-source fusion
原文传递
DNMKG: A method for constructing domain of nonferrous metals knowledge graph based on multiple corpus
8
作者 Hai-liang LI Hai-dong WANG 《Transactions of Nonferrous Metals Society of China》 2025年第8期2790-2802,共13页
To address the underutilization of Chinese research materials in nonferrous metals,a method for constructing a domain of nonferrous metals knowledge graph(DNMKG)was established.Starting from a domain thesaurus,entitie... To address the underutilization of Chinese research materials in nonferrous metals,a method for constructing a domain of nonferrous metals knowledge graph(DNMKG)was established.Starting from a domain thesaurus,entities and relationships were mapped as resource description framework(RDF)triples to form the graph’s framework.Properties and related entities were extracted from open knowledge bases,enriching the graph.A large-scale,multi-source heterogeneous corpus of over 1×10^(9) words was compiled from recent literature to further expand DNMKG.Using the knowledge graph as prior knowledge,natural language processing techniques were applied to the corpus,generating word vectors.A novel entity evaluation algorithm was used to identify and extract real domain entities,which were added to DNMKG.A prototype system was developed to visualize the knowledge graph and support human−computer interaction.Results demonstrate that DNMKG can enhance knowledge discovery and improve research efficiency in the nonferrous metals field. 展开更多
关键词 knowledge graph nonferrous metals THESAURUS word vector model multi-source heterogeneous corpus
在线阅读 下载PDF
Development and Application of Digital Twin Simulation System for Thermal Power Plant
9
作者 Hui Li Zhannan Ma +1 位作者 Qiang Liu Songxing Xie 《Journal of Electronic Research and Application》 2025年第6期231-236,共6页
As a product of the deep integration between next-generation information technology and industrial systems,digital twin technology has demonstrated significant advantages in real-time monitoring,predictive maintenance... As a product of the deep integration between next-generation information technology and industrial systems,digital twin technology has demonstrated significant advantages in real-time monitoring,predictive maintenance,and optimization decision-making for thermal power plants.To address challenges such as low equipment efficiency,high maintenance costs,and difficulties in safety risk management in traditional thermal power plants,this study developed a digital twin simulation system that covers the entire lifecycle of power generation units.The system achieves real-time collection and processing of critical parameters such as temperature,pressure,and flow rate through a collaborative architecture integrating multi-source heterogeneous sensor networks with Programmable Logic Controllers(PLCs).A three-tier processing framework handles data preprocessing,feature extraction,and intelligent analysis,while establishing a hybrid storage system combining time-series databases and relational databases to enable millisecond-level queries and data traceability.The simulation model development module employs modular design methodology,integrating multi-physics coupling algorithms including computational fluid dynamics(CFD)and thermal circulation equations.Automated parameter calibration is achieved through intelligent optimization algorithms,with model accuracy validated via unitlevel verification,system-level cascaded debugging tests,and virtual test platform simulations.Based on the modular layout strategy,the user interface and interaction module integrates 3D plant panoramic view,dynamic equipment model and multi-mode interaction channel,supports cross-terminal adaptation of PC,mobile terminal and control screen,and improves fault handling efficiency through AR assisted diagnosis function. 展开更多
关键词 Digital twin technology Thermal power plant Simulation system multi-source heterogeneous data
在线阅读 下载PDF
Evaluating Urban Housing Contradictions Through Multisource Data Fusion:a Case Study of Spatiotemporal Mismatch Analysis in Shenzhen with the HCEWI Model
10
作者 JIANG Aiyi CHEN Guanzhou CAO Jinzhou 《Journal of Geodesy and Geoinformation Science》 2025年第3期1-16,共16页
The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap ... The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas. 展开更多
关键词 index terms-housing contradiction assessment multi-source data fusion spatiotemporal heterogeneity job-housing spatial mismatch high-resolution urban diagnostics
在线阅读 下载PDF
A new multi-source remote sensing image sample dataset with high resolution for flood area extraction:GF-FloodNet
11
作者 Yuwei Zhang Peng Liu +3 位作者 Lajiao Chen Mengzhen Xu Xingyan Guo Lingjun Zhao 《International Journal of Digital Earth》 SCIE EI 2023年第1期2522-2554,共33页
Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo... Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o. 展开更多
关键词 Flood area extraction dataset construction multi-source remote sensing data deep learning
原文传递
随机森林优化算法在心脏瓣膜手术结果预测中的应用研究
12
作者 葛艳娜 曹礼园 +1 位作者 陈春娣 理艳荣 《信息与电脑》 2025年第8期5-7,共3页
针对心脏瓣膜手术结果预测的临床需求,文章提出了一种基于多维度特征优化和自适应参数调整的改进型随机森林预测框架。通过整合患者人口统计学特征、术前并发症、动态生化指标及心脏超声影像学参数等12类临床数据,构建了高维度异构医疗... 针对心脏瓣膜手术结果预测的临床需求,文章提出了一种基于多维度特征优化和自适应参数调整的改进型随机森林预测框架。通过整合患者人口统计学特征、术前并发症、动态生化指标及心脏超声影像学参数等12类临床数据,构建了高维度异构医疗数据集,利用交叉验证评估了模型的稳定性与准确性,并通过网络搜索法调整模型参数,提高了预测准确度、精确度和召回率。实验结果表明,改进后的随机森林算法在心脏瓣膜手术预测任务中表现出色,为术前决策提供了有力的数据支持。 展开更多
关键词 随机森林算法 心脏瓣膜手术 异构医疗数据集 网络搜索法
暂未订购
基于支持向量机的网络入侵检测 被引量:80
13
作者 李辉 管晓宏 +1 位作者 昝鑫 韩崇昭 《计算机研究与发展》 EI CSCD 北大核心 2003年第6期799-807,共9页
将统计学习理论引入入侵检测研究中 ,提出了一种基于支持向量机的入侵检测方法 (SVM BasedID) 针对入侵检测所获得的高维小样本异构数据集 ,将SVM算法在这种异构数据集上进行推广 ,构造了基于异构数据集上HVDM距离定义的RBF形核函数 ,... 将统计学习理论引入入侵检测研究中 ,提出了一种基于支持向量机的入侵检测方法 (SVM BasedID) 针对入侵检测所获得的高维小样本异构数据集 ,将SVM算法在这种异构数据集上进行推广 ,构造了基于异构数据集上HVDM距离定义的RBF形核函数 ,并基于这种核函数将有监督的C SVM算法和无监督One ClassSVM算法用于网络连接信息数据中的攻击检测和异常发现 ,通过对DARPA数据的检测试验结果表明提出的方法是可行的。 展开更多
关键词 入侵检测 统计学习理论 支持向量机 异构数据集
在线阅读 下载PDF
中国地表覆盖异质性参数提取与分析 被引量:5
14
作者 于文涛 李静 +4 位作者 柳钦火 曾也鲁 尹高飞 赵静 徐保东 《地球科学进展》 CAS CSCD 北大核心 2016年第10期1067-1077,共11页
地表异质性广泛存在于陆地表面各个尺度,是地表参数遥感反演不确定性的主要来源之一。基于高分辨率地表分类参考图,提取出低分辨率混合像元的端元数量和边界长度指标来描述地表异质性。然后以中国地区为例,使用全国30 m空间分辨率Global... 地表异质性广泛存在于陆地表面各个尺度,是地表参数遥感反演不确定性的主要来源之一。基于高分辨率地表分类参考图,提取出低分辨率混合像元的端元数量和边界长度指标来描述地表异质性。然后以中国地区为例,使用全国30 m空间分辨率Global Land 30地表分类数据集提取出1 km尺度像元的描述混合结构和破碎程度的异质性指标。并基于提取出的异质性指标分析了中国区域在1 km尺度上非均质地表地物类型的组合特征、斑块特征和不同生态群系内部异质性特征。发现山地和生态交错区是主要的高异质性区域,稀树草原生物群系内部异质性最大(平均边界长度为7 426 m),其次依次为森林(4 323 m)、耕地/草地(3 160 m)和灌丛(1 779 m)。 展开更多
关键词 空间异质性 地表参数反演 地表分类图 辐射传输
原文传递
基于半监督模糊聚类的入侵检测 被引量:3
15
作者 杜红乐 樊景博 《计算机工程与应用》 CSCD 北大核心 2016年第3期96-99,共4页
针对网络行为数据中带标签数据收集困难及网络行为数据的异构性,提出了一种基于异构距离和样本密度的半监督模糊聚类算法,并将该算法应用到网络入侵检测中。该方法依据网络行为数据样本的异构性计算样本与类之间的异构距离及各个类的样... 针对网络行为数据中带标签数据收集困难及网络行为数据的异构性,提出了一种基于异构距离和样本密度的半监督模糊聚类算法,并将该算法应用到网络入侵检测中。该方法依据网络行为数据样本的异构性计算样本与类之间的异构距离及各个类的样本密度,利用异构距离和类内样本密度计算样本与类之间的模糊隶属度,用所得隶属度对无标签样本进行加标签处理,并得到相应的分类器。在KDD CUP99数据集上进行仿真实验,结果表明该方法是可行的、高效的。 展开更多
关键词 入侵检测 半监督聚类 异构数据
在线阅读 下载PDF
基于离群聚类的异常入侵检测研究 被引量:2
16
作者 李志华 王士同 《系统工程与电子技术》 EI CSCD 北大核心 2009年第5期1227-1230,共4页
提出了一种离群聚类算法,并分析了算法抗例外点干扰的能力。离群数据是远离其它数据的数据,网络中异常入侵数据的实质就是离群数据,因为异常入侵记录往往呈现小样本和多变性的特点,并且偏离正常网络连接记录。通过定义新的异构样本的相... 提出了一种离群聚类算法,并分析了算法抗例外点干扰的能力。离群数据是远离其它数据的数据,网络中异常入侵数据的实质就是离群数据,因为异常入侵记录往往呈现小样本和多变性的特点,并且偏离正常网络连接记录。通过定义新的异构样本的相异性度量方法,提出了一种基于离群聚类无监督学习的异常入侵检测方法。仿真实验表明了方法的有效性和实用性,在总检测率方面优于文献中已有的其它方法。 展开更多
关键词 入侵检测 异构属性数据 离群聚类算法
在线阅读 下载PDF
基于双模调频分解的网络攻击信号检测仿真 被引量:2
17
作者 杨君普 杨旺 于莹 《计算机仿真》 CSCD 北大核心 2015年第6期292-295,363,共5页
传统方法主要是根据攻击信号的异常特征进行网络攻击信号检测,由于攻击信号的种类越来越复杂,传统方法无法克服检测过程中的"维数灾难"问题,很难适应网络高维异构数据集,尤其是针对大量样本集参与训练时,在寻找具有参数的网... 传统方法主要是根据攻击信号的异常特征进行网络攻击信号检测,由于攻击信号的种类越来越复杂,传统方法无法克服检测过程中的"维数灾难"问题,很难适应网络高维异构数据集,尤其是针对大量样本集参与训练时,在寻找具有参数的网格搜索过程中耗费时间过长,无法满足网络攻击检测准确性和及时性的要求。提出一种引入双模调频分解算法的网络攻击信号检测方法。将网络攻击信号与分数阶傅里叶变换方法相互融合,利用高阶累积量切片因子消除噪声的干扰,依据最小均方误差方法,计算网络攻击信号的波束域约束指向形成,实现正交频谱分离,达到网络攻击信号检测的目的。仿真证明,基于双模调频分解算法的网络攻击信号检测方法精准度高,效率高。 展开更多
关键词 网络 攻击信号 维数灾难 高维异构数据集 噪声消除 波束形成
在线阅读 下载PDF
基于核函数Fisher鉴别的异常入侵检测 被引量:5
18
作者 周鸣争 《电子与信息学报》 EI CSCD 北大核心 2006年第9期1727-1730,共4页
将核函数方法引入入侵检测研究中,提出了一种基于核函数Fisher鉴别的异常入侵检测算法,用于监控进程的非正常行为。首先分析了核函数Fisher鉴别分类算法应用于入侵检测的可能性,然后具体描述了核函数Fisher鉴别算法在异构数据集下的推广... 将核函数方法引入入侵检测研究中,提出了一种基于核函数Fisher鉴别的异常入侵检测算法,用于监控进程的非正常行为。首先分析了核函数Fisher鉴别分类算法应用于入侵检测的可能性,然后具体描述了核函数Fisher鉴别算法在异构数据集下的推广,提出了基于核函数Fisher鉴别的异常入侵检测模型。并以Sendmail系统调用序列数据集为例,详细讨论了该模型的工作过程。最后将实验仿真结果与其它方法进行了比较,结果表明,该方法的检测效果优于同类的其它方法。 展开更多
关键词 异常入侵检测 核函数Fisher鉴别 异构数据集 系统调用
在线阅读 下载PDF
多源异构数据的多维决策分析与可视化方法 被引量:2
19
作者 耿焕同 张明哲 张勇 《信息技术》 2013年第11期49-53,共5页
随着各行业各业务信息系统的不断建设与使用,行业积累了越来越多的多源异构的历史数据,快速发现有价值信息已成为一个主要的研究方向。以气象数据为例,针对气象历史数据的海量多源异构特点,结合气象业务多维决策分析与可视化的具体需求... 随着各行业各业务信息系统的不断建设与使用,行业积累了越来越多的多源异构的历史数据,快速发现有价值信息已成为一个主要的研究方向。以气象数据为例,针对气象历史数据的海量多源异构特点,结合气象业务多维决策分析与可视化的具体需求,提出一种面向多源异构数据的多维决策分析与可视化方法,该方法实现了多源异构数据的自动抽取与转换,多用户的在线多维决策分析模型设计以及分析结果的直观多形式可视化技术。通过该方法研制的系统在嘉定气象局业务中得到成功应用,有效提升了对气象数据的理解和利用水平;同时对其他行业多源异构数据的处理具有很好的借鉴作用。 展开更多
关键词 多源异构数据 多维决策分析 可视化 气象
在线阅读 下载PDF
异构分类器融合环境下的非平衡数据分类模型
20
作者 翟云 杨炳儒 +2 位作者 周法国 隋海峰 刘丽珍 《高技术通讯》 CAS CSCD 北大核心 2011年第10期1101-1107,共7页
为解决非平衡数据分类中的正样本分类精度不高的瓶颈问题,提出了一种异构分类器融合环境下的非平衡数据分类模型。该模型基于差异采样率的重采样算法和改进的Adaboost算法,融合了SVM和C5.0两种基分类器;基于知识融合机制,采用了独... 为解决非平衡数据分类中的正样本分类精度不高的瓶颈问题,提出了一种异构分类器融合环境下的非平衡数据分类模型。该模型基于差异采样率的重采样算法和改进的Adaboost算法,融合了SVM和C5.0两种基分类器;基于知识融合机制,采用了独特的分类器选择策略、分类器集成方法、分类决策方案。仿真实验结果表明,SCECM模型分类性能稳定,在非平衡数据集上具有良好的分类性能。 展开更多
关键词 非平衡数据分类 异构分类器 差异采样率 分类模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部