The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap ...The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
基金National Natural Science Foundation of China(No.42101346)Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University(GeoAI Special Project)(No.202510486196).
文摘The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.