期刊文献+
共找到379篇文章
< 1 2 19 >
每页显示 20 50 100
Classification of Beijing Line 10 Subway Living Circle Based on Multi-source Big Data
1
作者 SUN Shuai LI Ziying 《Journal of Landscape Research》 2023年第3期53-58,共6页
In the first-tier cities,subway has become an important carrier and life focus of people’s daily travel activities.By studying the distribution of POIs of public service facilities around Metro Line 10,using GIS to q... In the first-tier cities,subway has become an important carrier and life focus of people’s daily travel activities.By studying the distribution of POIs of public service facilities around Metro Line 10,using GIS to quantitatively analyze the surrounding formats of subway stations,discussing the functional attributes of subway stations,and discussing the distribution of urban functions from a new perspective,this paper provided guidance and advice for the construction of service facilities. 展开更多
关键词 multi-source big data Subway living circle BEIJING GIS
在线阅读 下载PDF
Analysis of Mining Surveying and Mapping Geographic Information Service in the Period of Big Data
2
作者 LI Weihong 《外文科技期刊数据库(文摘版)工程技术》 2021年第2期082-086,共5页
In order to cater to the period of the era of big data development, China's surveying and mapping industry should accurately base on the frontier development trends of big data technology, use scientific and reaso... In order to cater to the period of the era of big data development, China's surveying and mapping industry should accurately base on the frontier development trends of big data technology, use scientific and reasonable surveying and mapping technical means, and achieve high quality surveying and mapping process. Among them, for the mine surveying and mapping work, it can take the initiative to combine the surveying and mapping geographic information service to realize the surveying and mapping analysis of the mine data and relevant data, and provide good decision-making data for the mine surveying and mapping work. In view of this, this paper mainly based on the development background of the period of big data, mining surveying and mapping geographic information service issues are studied and analyzed for reference. 展开更多
关键词 big data mine surveying and mapping geographic information service ANALYSIS
原文传递
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:6
3
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
在线阅读 下载PDF
Land Cover Classification with Multi-source Data Using Evidential Reasoning Approach 被引量:3
4
作者 LI Huapeng ZHANG Shuqing +1 位作者 SUN Yan GAO Jing 《Chinese Geographical Science》 SCIE CSCD 2011年第3期312-321,共10页
Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application ... Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy. 展开更多
关键词 evidential reasoning Dempster-Shafer theory of evidence multi-source data geographic ancillary data land cover classification classification uncertainty
在线阅读 下载PDF
Exploring impacts of COVID-19 on spatial and temporal patterns of visitors to Canadian Rocky Mountain National Parks from social media big data
5
作者 Dehui Christina Geng Amy Li +4 位作者 Jieyu Zhang Howie W.Harshaw Christopher Gaston Wanli Wu Guangyu Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期13-33,共21页
COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.D... COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management. 展开更多
关键词 Tourism management Social media big data National parks COVID-19 geographical weighted regression
在线阅读 下载PDF
Application and research of global grid database design based on geographic information 被引量:6
6
作者 Xuming Liang 《Global Energy Interconnection》 2018年第1期87-95,共9页
Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international... Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system. 展开更多
关键词 big data collection geographic information Grid database data mining
在线阅读 下载PDF
Measurement of Urban Vitality and Its Relationship with the Built Environment Based on Multi-Source Big Data: A Case Study of Hefei
7
作者 Zhao Liwei Xuan Wei +2 位作者 Peng Kang Zhang Wen Lu Yanfei 《China City Planning Review》 2025年第1期75-87,共13页
Urban vitality is a complex and multifaceted concept that is pivotal to the livability and sustainability of cities.Recent studies have measured urban vitality and its relationship with the built environment from the ... Urban vitality is a complex and multifaceted concept that is pivotal to the livability and sustainability of cities.Recent studies have measured urban vitality and its relationship with the built environment from the perspectives of rationality and efficiency.However,in the context of new urbanization with Chinese characteristics which emphasizes people-oriented values,more emphases need to be placed on the subjective feelings of residents in studies of urban vitality.This paper focuses on Hefei,a representative second-tier city in central China,to explore the relationship between urban vitality and the built environment by utilizing multi-source big data,spatial autocorrelation,and geographic detector model.Urban vitality is measured in the two dimensions of population intensity and emotion intensity.The built environment is measured based on Maslow's theory of needs,encompassing the five dimensions of accessibility,convenience,safety,socialization,and aesthetics.Taking Hefei as a case,the paper proposes 18 built environment factors that may influence urban vitality and identifies 14 factors that significantly influence the urban vitality of emerging cities in China.The built environment factors with the most significant impact on urban vitality are POI accessibility on weekdays and public transport on weekends.In addition,the interaction effects between any two built environment factors are higher than that of a single factor.The results effectively reveal the influencing mechanisms of urban vitality and can help urban planners and policymakers to develop more targeted strategies to enhance urban vitality by optimizing the built environment. 展开更多
关键词 urban vitality built environment big data Maslow's theory of needs spatial autocorrelation geographic detector model
原文传递
Big geodata mining:Objective,connotations and research issues 被引量:4
8
作者 PEI Tao SONG Ci +5 位作者 GUO Sihui SHU Hua LIU Yaxi DU Yunyan MA Ting ZHOU Chenghu 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期251-266,共16页
The objective,connotations and research issues of big geodata mining were discussed to address its significance to geographical research in this paper.Big geodata may be categorized into two domains:big earth observat... The objective,connotations and research issues of big geodata mining were discussed to address its significance to geographical research in this paper.Big geodata may be categorized into two domains:big earth observation data and big human behavior data.A description of big geodata includes,in addition to the“5Vs”(volume,velocity,value,variety and veracity),a further five features,that is,granularity,scope,density,skewness and precision.Based on this approach,the essence of mining big geodata includes four aspects.First,flow space,where flow replaces points in traditional space,will become the new presentation form for big human behavior data.Second,the objectives for mining big geodata are the spatial patterns and the spatial relationships.Third,the spatiotemporal distributions of big geodata can be viewed as overlays of multiple geographic patterns and the characteristics of the data,namely heterogeneity and homogeneity,may change with scale.Fourth,data mining can be seen as a tool for discovery of geographic patterns and the patterns revealed may be attributed to human-land relationships.The big geodata mining methods may be categorized into two types in view of the mining objective,i.e.,classification mining and relationship mining.Future research will be faced by a number of issues,including the aggregation and connection of big geodata,the effective evaluation of the mining results and the challenge for mining to reveal“non-trivial”knowledge. 展开更多
关键词 big earth observation data big human behavior data geographical spatiotemporal pattern spatiotemporal heterogeneity knowledge discovery
原文传递
High-performance solutions of geographically weighted regression in R 被引量:2
9
作者 Binbin Lu Yigong Hu +4 位作者 Daisuke Murakami Chris Brunsdon Alexis Comber Martin Charlton Paul Harris 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第4期536-549,共14页
As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalen... As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred. 展开更多
关键词 Non-stationarity big data parallel computing Compute Unified Device Architecture(CUDA) geographically Weighted models(GWmodel)
原文传递
Spatio-temporal evolution and influencing factors of geopolitical relations among Arctic countries based on news big data
10
作者 LI Meng YUAN Wen +3 位作者 YUAN Wu NIU Fangqu LI Hanqin HU Duanmu 《Journal of Geographical Sciences》 SCIE CSCD 2022年第10期2036-2052,共17页
Global warming has caused the Arctic Ocean ice cover to shrink.This endangers the environment but has made traversing the Arctic channel possible.Therefore,the strategic position of the Arctic has been significantly i... Global warming has caused the Arctic Ocean ice cover to shrink.This endangers the environment but has made traversing the Arctic channel possible.Therefore,the strategic position of the Arctic has been significantly improved.As a near-Arctic country,China has formulated relevant policies that will be directly impacted by changes in the international relations between the eight Arctic countries(regions).A comprehensive and real-time analysis of the various characteristics of the Arctic geographical relationship is required in China,which helps formulate political,economic,and diplomatic countermeasures.Massive global real-time open databases provide news data from major media in various countries.This makes it possible to monitor geographical relationships in real-time.This paper explores key elements of the social development of eight Arctic countries(regions)over 2013-2019 based on the GDELT database and the method of labeled latent Dirichlet allocation.This paper also constructs the national interaction network and identifies the evolution pattern for the relationships between Arctic countries(regions).The following conclusions are drawn.(1)Arctic news hotspot is now focusing on climate change/ice cap melting which is becoming the main driving factor for changes in geographical relationships in the Arctic.(2)There is a strong correlation between the number of news pieces about ice cap melting and the sea ice area.(3)With the melting of the ice caps,the social,economic,and military activities in the Arctic have been booming,and the competition for dominance is becoming increasingly fierce.In general,there is a pattern of domination by Russia and Canada. 展开更多
关键词 ARCTIC geographical relationship spatiotemporal data mining topic model interactive network big data
原文传递
地理知识图谱辅助的煤矿区生态损伤智慧识别研究 被引量:1
11
作者 王行风 陈国良 《地球信息科学学报》 北大核心 2025年第2期367-380,共14页
【目的】验证基于知识图谱的空间推理方法在煤矿区生态损伤主动发现和智慧识别的适应性,探索新时期煤矿区生态环境治理的新思路与新技术。【方法】基于知识图谱构建技术,对接矿山“天-空-地-人”多源监测、感知数据,总结概括煤矿区生态... 【目的】验证基于知识图谱的空间推理方法在煤矿区生态损伤主动发现和智慧识别的适应性,探索新时期煤矿区生态环境治理的新思路与新技术。【方法】基于知识图谱构建技术,对接矿山“天-空-地-人”多源监测、感知数据,总结概括煤矿区生态单元的位置、形态、群体分布、分布格局以及时空演变等知识,设计了煤矿区生态单元的描述指标,构建了知识图谱辅助下的煤矿区生态损伤智慧识别推理规则,以辅助实现煤矿区地表生态环境采动损伤的主动发现与智能识别。【结果】以山西省某矿区作为研究区,构建了精准识别采动扰动塌陷单元和自然水面单元的空间推理规则。实验证明,知识图谱辅助下的煤矿区采动扰动单元的精准化、智能化识别精度能得到一定的提升,与传统识别结果相比,本文方法对错误图斑的剔除率为21.43%。【结论】知识图谱在煤矿区生态环境分析与评估具有良好适应性,可为采动扰动生态单元的主动发现、快速和精准识别提供技术支持,可为解决新时期复杂条件下的煤矿区生态环境治理问题提供了新的技术手段。 展开更多
关键词 煤矿区 生态环境 地理知识图谱 智慧识别 空间推理 主动发现 领域知识 时空大数据 采动灾害
原文传递
面向复杂自然场景的遥感地学分区智能解译框架及初探 被引量:1
12
作者 王志华 杨晓梅 +4 位作者 张俊瑶 刘晓亮 李连发 董文 贺伟 《地球信息科学学报》 北大核心 2025年第2期305-330,共26页
【目的】当下,面向多圈层耦合、人类干扰强烈的复杂自然场景遥感智能解译在地学研究和实际业务中常存在不好用的问题。为此,本文从遥感地学认知原理角度出发,在明晰遥感智能解译的使命是依托遥感大数据更好地辅助建立数字地球之后,认为... 【目的】当下,面向多圈层耦合、人类干扰强烈的复杂自然场景遥感智能解译在地学研究和实际业务中常存在不好用的问题。为此,本文从遥感地学认知原理角度出发,在明晰遥感智能解译的使命是依托遥感大数据更好地辅助建立数字地球之后,认为达成一致的知识表征模型是解决问题的关键,进而提出遥感解译与地学认知应该耦合为一个系统,以实现“数据获取知识”与“知识引导数据”的双向驱动。【分析】在此基础上,提出以遥感地学分区为纽带的智能解译框架,以打通已有地学知识向遥感智能解译过程的输入与引导,增加解译结果与已有地学知识体系的匹配度。该框架主要依靠定量化的场景复杂性度量和地理分区知识耦合,形成面向遥感智能解译的地学分区方法以及分区样本抽样与规范,从而实现面向大区域的知识耦合下分区解译策略。【展望】通过复杂度与优化抽样实验、影像分区分割尺度优选、耕地类型细分等实验,初步揭示了本框架思路在优选样本、影像分割、耕地精细类型识别等遥感智能解译多方面均存在巨大潜力。 展开更多
关键词 遥感大数据 数字地球 遥感智能解译 信息提取 地理分区/区划 土地利用/覆被分类 复杂自然场景 场景分类 地学知识图谱
原文传递
休闲消费偏好地域性研究:基于地理大数据的实证 被引量:1
13
作者 刘逸 陈了凡 陈海龙 《地理研究》 北大核心 2025年第3期861-875,共15页
当下国民对美好生活的需求中,消费需求供给的空间匹配矛盾日渐尖锐。个人消费偏好是否存在地域性特征,对细分消费市场空间是否形成显著影响,是解决这一矛盾的核心理论问题。本研究从此问题出发,提出“地域性休闲消费偏好指数”,以290个... 当下国民对美好生活的需求中,消费需求供给的空间匹配矛盾日渐尖锐。个人消费偏好是否存在地域性特征,对细分消费市场空间是否形成显著影响,是解决这一矛盾的核心理论问题。本研究从此问题出发,提出“地域性休闲消费偏好指数”,以290个行政区为基本单元,整合POI和区域统计数据进行测算,识别居民不同类型休闲消费偏好的地域性差异。首先,本研究证实了休闲消费偏好存在地域性分布规律,即居民休闲消费偏好显著受自然与社会综合环境的影响,但是地域性特征不服从经典地理分界线——胡焕庸线的分布;其中,川渝地区、北上广深等一线城市周边区域居民的偏好最高。其次,通过细分不同的休闲消费类型,研究发现自然气候与社会环境因素的影响存在显著差异,其中,自然气候因素对发展型消费影响不显著,对享受型消费影响较大,表现在日照时数、温度、降水等自然气候影响显著,且气候条件越差,人们的享受型休闲消费偏好越高;社会经济因素中的房价存在显著正向影响,即生活压力越大的地方,人们的发展型休闲消费偏好越高。本研究初步证实新环境决定论对地域性休闲消费偏好差异的解释力,为居民休闲消费空间结构挖掘提供新的研究视角,同时也为优化休闲产业空间布局提供建议与参考。 展开更多
关键词 休闲消费偏好 地域性 新环境决定论 大数据 享受型消费 发展型消费
原文传递
遥感地理分区三级动态框架设计和应用分析
14
作者 杨晓梅 张俊瑶 +2 位作者 刘晓亮 刘岳明 王志华 《地理学报》 北大核心 2025年第9期2502-2516,共15页
随着遥感大数据时代的来临,遥感信息提取的方式已经从单幅影像处理转变为时空谱融合后的综合处理方式。换言之,这种方法强调“大区域—精细化”的处理策略。在大区域层面,地理环境的复杂性使遥感成像同时面临“同谱异物”和“同物异谱... 随着遥感大数据时代的来临,遥感信息提取的方式已经从单幅影像处理转变为时空谱融合后的综合处理方式。换言之,这种方法强调“大区域—精细化”的处理策略。在大区域层面,地理环境的复杂性使遥感成像同时面临“同谱异物”和“同物异谱”的挑战。合理的分区可以有效降低区域单元的异质性,从而提高遥感影像分类的精度。在精细化层面,遥感成像能够反映地表特征的细微变化,但地理环境本身具有“宏观规律,微观混杂”的特性。缺乏自上而下的全局规律总控,而仅依赖于遥感数据层面自下而上的分类,往往会导致较大的不确定性和认知偏差。为此,本文提出了一种多尺度遥感地理分区框架,从宏观、中观、微观3个层级解决地理规律和多分辨率遥感成像之间的尺度和表征差异问题,并通过3个层级的应用实例表明,合理的分区不仅能有效提升遥感信息提取的精度,还能丰富信息提取的多类型属性,从而提升行业遥感的“大区域—精准化”应用。 展开更多
关键词 遥感地理分区 遥感大数据 多尺度 地学知识 遥感信息提取
原文传递
一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法
15
作者 黄鑫 叶健 +3 位作者 刘骋冰 曾秋雨 郭万新 郭志凯 《测绘学报》 北大核心 2025年第10期1826-1840,共15页
滑坡易发性预测及诱因分析对于制定科学有效的滑坡灾害防治策略至关重要。然而,当前仍缺乏能够兼具高预测精度与可解释性的滑坡预测模型。为此,本文提出了一种基于可解释性增强的集成学习方法,构建Stacking-SHAP模型,以提升滑坡易发性... 滑坡易发性预测及诱因分析对于制定科学有效的滑坡灾害防治策略至关重要。然而,当前仍缺乏能够兼具高预测精度与可解释性的滑坡预测模型。为此,本文提出了一种基于可解释性增强的集成学习方法,构建Stacking-SHAP模型,以提升滑坡易发性预测的准确性与诱因分析的可靠性。本文方法采用Stacking集成框架,融合XGBoost、CatBoost、LightGBM、逻辑回归(LR)、随机森林(RF)等多种机器学习分类器,在保证预测精度的基础上,引入SHAP(shapley additive explanations)算法,以增强模型的可解释性。试验结果表明,Stacking-SHAP模型的AUC值达到0.920,显著优于单一分类器模型,如XGBoost(0.893)、CatBoost(0.894)、LightGBM(0.879)、RF(0.859)和LR(0.794)。更重要的是,相较于SHAP集成单一机器学习模型,Stacking-SHAP可解释增强集成模型在滑坡诱因分析方面表现出更优的综合性能,提高了滑坡致灾因素分析的可信度。整体而言,本文方法兼具高精度预测与高可靠性解释,为滑坡易发性预测与诱因分析提供了一种创新性方法,在滑坡防治与减灾领域具有重要的理论与应用价值。 展开更多
关键词 滑坡易发性 地理大数据 Stacking算法 SHAP算法 滑坡诱因分析
在线阅读 下载PDF
基于数字资产一张图的铁路协同体系研究
16
作者 陈燕平 《铁道工程学报》 北大核心 2025年第8期99-104,共6页
研究目的:随着“四纵四横”“八纵八横”铁路网的基本成型,铁路传统建造技术已然成熟,但对于设计、施工、建设以及运维一张图仍停留在理论构想阶段,铁路精细化设计、全监控施工、智能化运维等方面的软实力仍是短板,也是制约我国自主数... 研究目的:随着“四纵四横”“八纵八横”铁路网的基本成型,铁路传统建造技术已然成熟,但对于设计、施工、建设以及运维一张图仍停留在理论构想阶段,铁路精细化设计、全监控施工、智能化运维等方面的软实力仍是短板,也是制约我国自主数字铁路工程乃至智能铁路体系建设的根本瓶颈。随着物理世界AI智能化水平的迅猛发展,铁路工程走向协同化、数字化、智能化也是必然的发展趋势。针对目前我国铁路信息化短板,提出数字资产一张图的铁路协同勘察设计建造运维体系构想,本文主要思路为铁路沿承数字地球、数字城市的技术脉络,以3DGIS平台为基础框架,构建起数字铁路工程资产,实现孪生铁路在计算机中的表达。研究结论:(1)以GIS与BIM设计构建起来的“宏-微”观两级演化,具有信息化无缝衔接全阶段全过程、空间布局设计与结构设计实现松耦合、单尺度静态表达向多尺度动态表达等显著优势;(2)以三维选线系统自动化模型构建为核心的数字资产应用体系,主要解决普适资产的接入与全真、高效表达;(3)“宏-微”观两级演化勘察设计体系的构建将极大地促进自动化设计创新;(4)本研究成果可为铁路正向BIM设计与施工、运维奠定基础。 展开更多
关键词 数字铁路 大数据 多尺度 地理设计 协同设计 BIM设计 数字孪生
在线阅读 下载PDF
基于地理环境大数据的典型事件影响建模与应用
17
作者 王玮 赵跃 +3 位作者 李进珍 李基诚 吴茂炜 汪源 《网络安全与数据治理》 2025年第S1期1-6,共6页
以地理环境大数据为支撑,以爆炸、滑坡、溃坝、泄漏等典型环境事件为驱动,对四类事件的演变进程和影响情况进行分析研究,从逻辑架构、实现途径两个方面阐明如何利用地理环境大数据构建典型环境事件影响模型,并举例说明了模型的具体应用... 以地理环境大数据为支撑,以爆炸、滑坡、溃坝、泄漏等典型环境事件为驱动,对四类事件的演变进程和影响情况进行分析研究,从逻辑架构、实现途径两个方面阐明如何利用地理环境大数据构建典型环境事件影响模型,并举例说明了模型的具体应用模式。所介绍的典型环境事件模型集合,可以通过API接口与其他系统进行结合,也可被通用大模型调用,为大数据领域研究提供理论和应用支撑。 展开更多
关键词 地理环境大数据 环境事件 建模
在线阅读 下载PDF
基于大数据和熵权-随机森林的城市地下空间需求评价 被引量:1
18
作者 葛睿雅 李晓晖 +3 位作者 袁峰 窦帆帆 熊芸莹 薛晨 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期360-368,共9页
科学评估地下空间开发需求潜力是缓解城市化问题和合理拓展有限区域的重要基础工作。目前地下空间评价中的社会经济数据多来自于传统官方文件,其全面完整性和时空精度并不理想;此外主客观赋权方法的使用,一定程度上存在主观性强和受数... 科学评估地下空间开发需求潜力是缓解城市化问题和合理拓展有限区域的重要基础工作。目前地下空间评价中的社会经济数据多来自于传统官方文件,其全面完整性和时空精度并不理想;此外主客观赋权方法的使用,一定程度上存在主观性强和受数据干扰等不足。文章以多源大数据支持的指标体系为基础,构建熵权-随机森林耦合的地下空间需求评价模型。该模型基于熵权法确定负样本,将总样本和指标因子导入随机森林算法中,挖掘社会经济指标与现有地下设施间的复杂非线性关系。研究表明,经过网格搜索调优后的模型AUC(area under curve)精度达到0.979,其中77.45%的现有设施落入评价的高需求区内,证明所采用模型有较强的准确性和可靠性,其精细化评价结果可为今后地下建设选址提供更符合实际的借鉴。 展开更多
关键词 熵权-随机森林模型 多源地理大数据 社会经济指标因子 地下空间需求评价
在线阅读 下载PDF
东北地区泥炭地潜在分布识别 被引量:1
19
作者 朱辰兴 李东鹤 那晓东 《生态学报》 北大核心 2025年第14期6846-6859,共14页
全球泥炭地约占陆地面积的3%—4%,其土壤碳储存量却达到地球土壤碳库的约1/3,在陆地生态系统碳循环中发挥重要作用。然而,目前大面积泥炭地被排干,在气候变化背景下,泥炭地的水位可呈现多种变化趋势,这不仅影响其生态功能,也对碳存储和... 全球泥炭地约占陆地面积的3%—4%,其土壤碳储存量却达到地球土壤碳库的约1/3,在陆地生态系统碳循环中发挥重要作用。然而,目前大面积泥炭地被排干,在气候变化背景下,泥炭地的水位可呈现多种变化趋势,这不仅影响其生态功能,也对碳存储和碳排放过程带来较大的不确定性。因此,许多国家和地区正在推动泥炭地的科学保护。东北地区是中国最大的泥炭地分布区之一,但当前对于该地区泥炭地的分布估计存在研究差异,给保护工作带来了困难。为此,整合集成模型BIOMOD2以及地理大数据,模拟了东北地区泥炭地的潜在分布。基于2041个泥炭地样本分布和30种由气候,土壤,植被和地形因子构建的指标体系,建立了识别泥炭地潜在分布的集成模型,并且结合人类足迹指数探索泥炭地的保护潜力。研究结果表明:BIOMOD2集成模型的预测精度相比于单模型有提升,并且避免了过拟合的风险,鲁棒性较高。东北地区存在至少63803km^(2)的泥炭地潜在分布区,主要分布于土壤有机碳含量为7.93g/kg以上,海拔630—927m,潜在蒸散发4—10mm的区域。泥炭地潜在分布的核心区域中的已保护区面积占比为9.8%,建议保护区面积占比40.61%,缓冲区面积占比17.79%,修复区面积占比31.8%。研究对于识别泥炭地分布的潜在分布区域,以及其恢复和保护的热点区域有重要意义,有助于国家“双碳”战略目标的实现。 展开更多
关键词 泥炭地 地理大数据 集成模型 东北地区 人类活动
在线阅读 下载PDF
基于多种机器学习算法的东北地区潜在湿地分布模拟
20
作者 潘梓豪 于福东 +3 位作者 石新颖 相恒星 毛德华 范文义 《湿地科学》 北大核心 2025年第3期447-457,共11页
潜在湿地的分布范围对于湿地的科学规划、有效管理和适当恢复至关重要。在潜在湿地分布模拟制图中,如何选择高精度的机器学习模型以实现高置信度的湿地资源评价仍需开展深入研究。本研究以中国东北地区为研究区,构建了综合考虑水文、土... 潜在湿地的分布范围对于湿地的科学规划、有效管理和适当恢复至关重要。在潜在湿地分布模拟制图中,如何选择高精度的机器学习模型以实现高置信度的湿地资源评价仍需开展深入研究。本研究以中国东北地区为研究区,构建了综合考虑水文、土壤、植被和地形因子的潜在湿地模拟指标体系,应用地理大数据和多种机器学习算法(随机森林、支持向量机、深度神经网络和极端梯度提升),模拟东北地区潜在湿地的分布并进行空间格局分析。研究结果表明,4种算法的模型性能均较好,接收者操作特征曲线下的面积(AUC)均大于0.69,其中基于随机森林算法模拟的潜在湿地分布具有最高的精度,总体精度为85.57%,Kappa系数为0.71。东北地区潜在湿地面积为128790 km^(2),主要分布在降水量为400~600 mm、土壤类型为半水成土且覆盖有草甸和湿生植物的区域。研究结果可为东北地区乃至中国湿地资源的评价提供重要基础数据。 展开更多
关键词 潜在湿地分布 机器学习 地理大数据 湿地恢复 东北地区
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部