The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great...The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.展开更多
To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances...To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.展开更多
The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in...The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on co...Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble...Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.展开更多
Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite elemen...Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.展开更多
In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved b...In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
基金This work was supported by the National Advance Research Program(Item No.Y1601-1).
文摘The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.
基金supported by the National Key R&D Program of China(No.2023YFB2603602)the National Natural Science Foundation of China(Nos.52222810 and 52178383).
文摘To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
基金supported by the National Key R&D Program of China grant(2017YFC0603105).
文摘The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金supported by the Sichuan Science and Technology Program(Nos.2024JDRC0100 and 2023YFQ0091)the National Natural Science Foundation of China(Nos.U21A20167 and 52475138)the Scientific Research Foundation of the State Key Laboratory of Rail Transit Vehicle System(No.2024RVL-T08).
文摘Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
文摘Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.
基金The authors would like to acknowledge the China Postdoctoral Science Foundation(Grant No.2019M660488)to provide fund for this work.
文摘Shockwaves from fuel-air explosive(FAE)cloud explosions may cause significant casualties.The ground overpressure field is usually used to evaluate the damage range of explosion shockwaves.In this paper,a finite element model of multi-sources FAE explosion is established to simulate the process of multiple shockwaves propagation and interaction.The model is verified with the experimental data of a fourfoldsource FAE explosion,with the total fuel mass of 340 kg.Simulation results show that the overpressure fields of multi-sources FAE explosions are different from that of the single-source.In the case of multisources,the overpressure fields are influenced significantly by source scattering distance and source number.Subsequently,damage ranges of overpressure under three different levels are calculated.Within a suitable source scattering distance,the damage range of multi-sources situation is greater than that of the single-source,under the same amount of total fuel mass.This research provides a basis for personnel shockwave protection from multi-sources FAE explosion.
基金National Social Science Foundation of China,No.15BJY051Open Topic of Hunan Key Laboratory of Land Resources Evaluation and Utilization,No.SYS-ZX-202002Research Project of Appraisement Committee of Social Sciences Research Achievements of Hunan Province,No.XSP18ZDI031。
文摘In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.