期刊文献+
共找到547篇文章
< 1 2 28 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Separation method for multi-source blended seismic data
2
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
在线阅读 下载PDF
Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox 被引量:5
3
作者 黄晋英 潘宏侠 +1 位作者 毕世华 杨喜旺 《Journal of Central South University》 SCIE EI CAS 2008年第S2期409-415,共7页
Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on parti... Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault. 展开更多
关键词 PSO BLIND source separation fault diagnosis fault information enhancement GEARBOX
在线阅读 下载PDF
Fault location of distribution networks based on multi-source information 被引量:8
4
作者 Wenbo Li Jianjun Su +2 位作者 Xin Wang Jiamei Li Qian Ai 《Global Energy Interconnection》 2020年第1期77-85,共9页
In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for th... In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance. 展开更多
关键词 Internet of Things multi-source information D-S evidence theory Binary particle swarm optimization algorithm fault tolerance
在线阅读 下载PDF
Fault Diagnosis and Separation for a Distributed Rotary-laser Scanning System 被引量:1
5
作者 Siyang GUO Yin GUO +2 位作者 Shibin YIN Hongbo XIE Jigui ZHU 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期70-78,共9页
The wMPS is a laser-based measurement system used for large scale metrology.However,it is susceptible to external factors such as vibrations,which can lead to unreliable measurements.This paper presents a fault diagno... The wMPS is a laser-based measurement system used for large scale metrology.However,it is susceptible to external factors such as vibrations,which can lead to unreliable measurements.This paper presents a fault diagnosis and separation method which can counter this problem.To begin with,the paper uses simple models to explain the fault diagnosis and separation methods.These methods are then mathematically derived using statistical analysis and the principles of the wMPS.A comprehensive solution for fault diagnosis and separation is proposed,considering the characteristics of the wMPS.The effectiveness of this solution is verified through experimental observations.It can be concluded that this approach can detect and separate false observations,thereby enhancing the reliability of the wMPS. 展开更多
关键词 rotary-laser scanning measurement system least square method fault diagnosis fault separation
在线阅读 下载PDF
Multi-scale wavelet separation of aeromag-netic anomaly and study of faults in Beijing area
6
作者 张先 赵丽 +1 位作者 刘天佑 杨宇山 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第5期542-551,共10页
In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic ano... In this paper, through a multi-scale separation of the aeromagnetic anomaly by wavelet transform technique, we reprocessed the aeromagnetic data collected 20 years ago in Beijing area and analyzed the aeromagnetic anomaly qualitatively, integrating geological structure features in the area. In particular, we studied the spatial distributions of the two main faults called Shunyi-Liangxiang fault and Banqiao-Babaoshan-Tongxian fault, which have cut and gone through the central Beijing area striking in NE and EW directions, respectively. The influences of these two faults on the earthquakes have also been discussed briefly. 展开更多
关键词 Beijing area aeromagnetic anomaly multi-scale separation fault analysis
在线阅读 下载PDF
The Research of Blind Source Separation (BSS) in Machinery Fault Diagnosis 被引量:1
7
作者 ZHONG Zhen-mao, CHEN Jin, ZHONG Ping State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiaotong University, Shanghai 200030,P. R. China 《International Journal of Plant Engineering and Management》 2001年第1期41-46,共6页
Blind source separation (BSS) technology is very useful in many fields, such as communication, radar and so on. Because of the advantage of BSS that it can separate multi-sources even not knowing the mix-coefficient a... Blind source separation (BSS) technology is very useful in many fields, such as communication, radar and so on. Because of the advantage of BSS that it can separate multi-sources even not knowing the mix-coefficient and the probability distribution, it can also be used in fault diagnosis. In this paper, we first use the BSS to deal with the sound from the machinery in fault diagnosis. We make a simulation of two sound sources and four sensors to test the result. Each source is a narrow-band source, which is composed of several sine waves. The result shows that the two sources can be well separated from the mixed signals. So we can draw a conclusion that BSS can improve the technology of sound fault diagnosis, especially in rotating machinery. 展开更多
关键词 fault diagnosis blind source separation (BSS)
在线阅读 下载PDF
Separation of Fault Tolerance and Non-Functional Concerns: Aspect Oriented Patterns and Evaluation
8
作者 Kashif Hameed Rob Williams Jim Smith 《Journal of Software Engineering and Applications》 2010年第4期303-311,共9页
Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with ... Dependable computer based systems employing fault tolerance and robust software development techniques demand additional error detection and recovery related tasks. This results in tangling of core functionality with these cross cutting non-functional concerns. In this regard current work identifies these dependability related non-functional and cross-cutting concerns and proposes design and implementation solutions in an aspect oriented framework that modularizes and separates them from core functionality. The degree of separation has been quantified using software metrics. A Lego NXT Robot based case study has been completed to evaluate the proposed design framework. 展开更多
关键词 ASPECT Oriented Design and Programming separation of CONCERNS EXECUTABLE ASSERTIONS EXCEPTION Handling fault Tolerance Software Metrics
在线阅读 下载PDF
Efficient feature selection for enhanced chiller fault diagnosis:A multi-source ranking information-driven ensemble approach
9
作者 Zhanwei Wang Penghua Xia +4 位作者 Jingjing Guo Sai Zhou Lin Wang Yu Wang Chunxiao Zhang 《Building Simulation》 2025年第1期141-159,共19页
Fault diagnosis(FD)is essential for ensuring the reliable operation of chillers and preventing energy waste.Feature selection(FS)is a critical prerequisite for effective FD.However,current FS methods have two major ga... Fault diagnosis(FD)is essential for ensuring the reliable operation of chillers and preventing energy waste.Feature selection(FS)is a critical prerequisite for effective FD.However,current FS methods have two major gaps.First,most approaches rely on single-source ranking information(SSRI)to evaluate features individually,which results in non-robust outcomes across different models and datasets due to the one-sided nature of SSRI.Second,thermodynamic mechanism features are often overlooked,leading to incomplete initial feature libraries,making it challenging to select optimal features and achieve better diagnostic performance.To address these issues,a robust ensemble FS method based on multi-source ranking information(MSRI)is proposed.By employing an efficient strategy based on maximizing relevance while proper redundancy,the MSRI method fully leverages Mutual Information,Information Gain,Gain Ratio,Gini index,Chi-squared,and Relief-F from both qualitative and quantitative perspectives.Additionally,comprehensive consideration of thermodynamic mechanism features ensures a complete initial feature library.From a methodological standpoint,a general framework for constructing the MSRI-based FS method is provided.The proposed method is applied to chiller FD and tested across ten widely-used machine learning models.Thirteen optimized features are selected from the original set of forty-two,achieving an average diagnostic accuracy of 98.40%and an average F-measure above 94.94%,demonstrating the effectiveness and generalizability of the MSRI method.Compared to the SSRI approach,the MSRI method shows superior robustness,with the standard deviation of diagnostic accuracy reduced by 0.03 to 0.07 and an improvement in diagnostic accuracy ranging from 2.53%to 6.12%.Moreover,the MSRI method reduced computation time by 98.62%compared to wrapper methods,without sacrificing accuracy. 展开更多
关键词 CHILLER feature selection fault diagnosis multi-source ranking information machine learning
原文传递
A Blind Separation Approach of Low Order Cyclostationary Signals
10
作者 Wang Zhiyang Chen Jin Du Wenliao 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期159-164,共6页
This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity an... This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity and reducing the randomicity of cyclostationary signal and it is particularly applicable to the separation of low order cyclostationary signals.The method also demonstrates the importance of extraction of cyclostationary signals from low order to high order in turn.The effectiveness of the proposed method is finally demonstrated by computer simulation and experiment. 展开更多
关键词 BLIND source separation CYCLOSTATIONARY CYCLIC AUTOCORRELATION function machine fault diagnosis
在线阅读 下载PDF
Faults Analysis and Diagnosis of DRJ-460 Dish Centrifugal Separator′s Helical Gear 被引量:1
11
作者 MAXiao-jian GANXue-hui 《International Journal of Plant Engineering and Management》 2004年第4期192-197,共6页
The main faults of dish centrifugal separator's helical gear are described inthis paper. In order to diagnose the DRJ-460 dish centrifugal separator correctly, the vibration istested with a helical gear under both... The main faults of dish centrifugal separator's helical gear are described inthis paper. In order to diagnose the DRJ-460 dish centrifugal separator correctly, the vibration istested with a helical gear under both normal and abnormal conditions. After comparing severalgeneral methods of the gear's fault feature extraction, a new convenient and effective method ispresented on the basis of analyzing the vibration spectrum under different rotary velocities. 展开更多
关键词 dish centrifugal separator helical gear fault diagnosis
在线阅读 下载PDF
Analysis of multiple-faults of high-voltage circuit breakers based on non-negative matrix decomposition 被引量:1
12
作者 Yongrong Zhou Zhaoxing Ma +1 位作者 Hao Chen Ruihua Wang 《Global Energy Interconnection》 EI CSCD 2024年第2期179-189,共11页
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul... High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers. 展开更多
关键词 High voltage circuit breaker Signal separation MONITOR Multiple faults Power system
在线阅读 下载PDF
Risk Analysis Using Multi-Source Data for Distribution Networks Facing Extreme Natural Disasters
13
作者 Jun Yang Nannan Wang +1 位作者 Jiang Wang Yashuai Luo 《Energy Engineering》 EI 2023年第9期2079-2096,共18页
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera... Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters. 展开更多
关键词 Distribution network disaster damage analysis fault judgment multi-source data
在线阅读 下载PDF
基于GADF和CWT并行输入模型的滚动轴承智能诊断研究
14
作者 张小丽 和飞翔 +2 位作者 梁旺 李敏 王保建 《湖南大学学报(自然科学版)》 北大核心 2025年第2期98-108,共11页
滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual n... 滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息.针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual neural network,P2DDSResNet)模型,通过格拉姆角分场(Gramian angular difference field,GADF)和连续小波变换(continuous wavelet transform,CWT)将振动信号转变为二维时频图像,保留了完整的时频域信息.采用深度可分离卷积替代残差模块中的普通卷积,增强特征学习能力,从而使模型具有更强的特征提取能力,以解决在高噪声和变工况环境中故障诊断效果不佳的问题.采用滚动轴承故障模拟试验台获取的数据对其进行试验分析并与其他卷积神经网络方法对比,结果表明,优化后的算法模型具有良好的泛化性和准确率. 展开更多
关键词 故障诊断 深度可分离卷积 滚动轴承 残差神经网络 特征提取
在线阅读 下载PDF
频域卷积盲源分离问题下的故障诊断方法探讨
15
作者 张明珠 王红尧 《机械设计》 北大核心 2025年第7期164-171,共8页
目前,多采用振动声波信号进行滚动轴承的故障诊断,但在高温、高腐蚀等外界环境影响下,当前同步提取变换(synchroextracting transform,SET)处理强干扰信号分量时,缺乏自适应性而易发生频率模糊,导致频域卷积盲源分离中排序不当和幅度不... 目前,多采用振动声波信号进行滚动轴承的故障诊断,但在高温、高腐蚀等外界环境影响下,当前同步提取变换(synchroextracting transform,SET)处理强干扰信号分量时,缺乏自适应性而易发生频率模糊,导致频域卷积盲源分离中排序不当和幅度不定问题。提出基于残差网络和声波信号递归图的滚动轴承故障诊断方法。采用改进的频域卷积盲源分离方式分离声波信号,同时优化频域卷积盲源分离中排序和幅度不定问题;通过相空间重构转化分离出的声波信号,获得二维递归图;将二维递归图作为深度残差对冲网络的输入,实现滚动轴承故障诊断。试验结果表明:所提方法在滚动轴承声波信号分类中的相关系数最大为0.998,二次残差最大仅为-40.18,ROC曲线更理想,具有实用性。 展开更多
关键词 滚动轴承 残差网络 声波信号递归图 频域卷积盲源分离 故障诊断
原文传递
基于二次分解时频图和SE-DSMC-BSA的轻量化有载分接开关机械故障识别方法
16
作者 李思奇 夏卯 +4 位作者 鲁思兆 毕贵红 黄一超 阮彦俊 李良创 《振动与冲击》 北大核心 2025年第11期268-279,308,共13页
有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convo... 有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convolution,DSMC)、挤压-激励(squeeze-excitation,SE)注意力机制和广播自注意力(broadcast self-attention,BSA)机制的轻量化OLTC故障识别方法。首先,建立OLTC故障模拟试验平台获取振动信号。在此基础上,引入二次分解和Hilbert变换,将两次分解的分量全部转换为时频图。然后,利用SE-DSMC对时频图进行多尺度的特征提取,并进行通道特征增强。最后,引入BSA对全局特征进行提取,以提升故障识别的准确率。与现有方法相比,该方法特别是在小样本情况下具有识别速度快、准确率高和轻量化等优势。 展开更多
关键词 有载分接开关(OLTC) 故障识别 二次分解 挤压-激励(SE) 深度可分离多尺度卷积(DSMC) 广播自注意力(BSA) 轻量化
在线阅读 下载PDF
新型盐渍土基泡沫轻质土隔断层阻盐机制及效果研究 被引量:1
17
作者 张荣 赵斌 +3 位作者 郑小川 陈令 卢正 赵阳 《岩土力学》 北大核心 2025年第2期515-526,538,共13页
盐渍土广泛分布于我国西部地区,其盐胀特性对道路工程产生严重危害,研究盐渍土路基水盐迁移规律并切断其路径对盐渍土地区道路安全防治起到关键作用。基于开挖废土利用构想,提出一种新型盐渍土基泡沫轻质土作为盐渍土地区路基隔断层。... 盐渍土广泛分布于我国西部地区,其盐胀特性对道路工程产生严重危害,研究盐渍土路基水盐迁移规律并切断其路径对盐渍土地区道路安全防治起到关键作用。基于开挖废土利用构想,提出一种新型盐渍土基泡沫轻质土作为盐渍土地区路基隔断层。采用自研设备开展相关试验,测试其内部温度变化、竖向位移及冻融后的水盐分布,分析新型泡沫轻质土隔断层的隔盐消胀效果,并从微观结构角度探究阻盐机制。结果表明:在温度梯度下,盐渍土试样内部水分与盐分向上迁移,多在中上部聚集。新型泡沫轻质土隔断层能有效阻隔水盐上迁并抑制盐胀,土体含盐量越高,抑胀效果越好。盐分在泡沫轻质土孔洞内析出结晶成盐壳,泡沫轻质土的多孔结构不仅能有效储存盐分,而且能阻隔盐分迁移,使盐分结晶在其内部进行,从而减少盐胀对土体的破坏。 展开更多
关键词 盐渍土 水盐迁移 隔断层 冻融循环 泡沫轻质土
原文传递
分体式有载分接开关结构可靠性验证及优化 被引量:1
18
作者 李元琦 葛亦宁 +6 位作者 汪黎 邵宇航 李金忠 汪可 刘轩东 李刚 李戈琦 《电机与控制学报》 北大核心 2025年第7期12-21,共10页
有载分接开关在切换过程中有概率导致电气故障引起事故,新型有载分接开关通过分体式设计将切换油室与变压器主体隔离,理论上降低了变压器燃爆的可能。为了验证新型分体式有载分接开关设计的可行性,尤其是电弧故障下分体式结构间引线套... 有载分接开关在切换过程中有概率导致电气故障引起事故,新型有载分接开关通过分体式设计将切换油室与变压器主体隔离,理论上降低了变压器燃爆的可能。为了验证新型分体式有载分接开关设计的可行性,尤其是电弧故障下分体式结构间引线套管等关键隔离结构的可靠性,基于压力声学法以及声固耦合法建立了仿真模型,结合压力-应力特性对电弧故障能量的影响、电弧故障位置的影响以及电弧故障发生于引线套管附近直接冲击隔离结构的极端情况进行了分析。研究结果表明:当故障发生于切换油室内部时,故障能量的升高以及故障源对泄压装置的远离均会导致分体油箱内部承受压强增大;副油箱的存在对主油箱能起到有效的保护作用;极端情况下,引线套管可靠,而油室底座、油箱联通结构等部位存在应力集中,具有形变、破损风险。基于研究结果对相应结构进行了优化设计,应力分布明显改善。 展开更多
关键词 有载分接开关 电弧故障 分体式布置 有限元仿真 压力分布 应力分布
在线阅读 下载PDF
基于改进FastICA和多特征融合的10 kV断路器机械故障声纹诊断方法 被引量:2
19
作者 单光瑞 段梵 +1 位作者 李先允 陈兰杭 《测试技术学报》 2025年第1期104-112,共9页
针对基于声纹特征的10 kV断路器机械故障模型易受环境噪声影响,识别准确率低,识别时间过长的问题,提出了一种基于改进FastICA和Bi-LSTM多特征混合的10 kV断路器机械故障声纹诊断方法。首先,采用皮尔逊系数对FastICA算法进行改进,利用改... 针对基于声纹特征的10 kV断路器机械故障模型易受环境噪声影响,识别准确率低,识别时间过长的问题,提出了一种基于改进FastICA和Bi-LSTM多特征混合的10 kV断路器机械故障声纹诊断方法。首先,采用皮尔逊系数对FastICA算法进行改进,利用改进的FastICA算法对采集的声音进行噪声分离,提取纯净的10 kV断路器状态声纹信号;然后,通过傅里叶变换分析10 kV断路器各种状态下频域信息,依据分析结果选取合适的时域、频域、声学特征,并通过差异度分析,选取贡献度大的特征构成一维混合特征;最后,将混合特征作为诊断依据,建立基于Bi-LSTM的故障分类模型。结果表明,该方法能够有效识别出10 kV断路器常见的8种机械故障和正常分合闸,识别准确率可达99.3%,满足电网对电气设备故障诊断的准确性要求。 展开更多
关键词 10 kV断路器 机械故障诊断 声纹识别 噪声分离 双层长短期神经网络(Bi-LSTM)
在线阅读 下载PDF
基于轻量融合语义分割的三维断层地震识别方法
20
作者 单慧琳 王兴涛 +3 位作者 徐宜俊 王志浩 黄浩瀚 张银胜 《吉林大学学报(地球科学版)》 北大核心 2025年第3期987-1000,共14页
当前基于深度学习的断层识别方法层出不穷,重点围绕U型网络开展研究,但U型网络使用了大量的常规卷积,在提高提取特征效果的同时忽略了特征冗余和过拟合问题,导致网络复杂度较高。为了在高精度识别的同时减少特征冗余、缓解过拟合问题,... 当前基于深度学习的断层识别方法层出不穷,重点围绕U型网络开展研究,但U型网络使用了大量的常规卷积,在提高提取特征效果的同时忽略了特征冗余和过拟合问题,导致网络复杂度较高。为了在高精度识别的同时减少特征冗余、缓解过拟合问题,本文提出一种轻量型融合语义分割网络(lightweight fusion semantic segmentation network,LF-SeNet)用于三维断层识别。相较于传统的断层识别网络,LF-SeNet将跳跃连接思想和特征融合相结合,其中,轻量型特征融合模块包含三维可分离卷积、SimAM(simple attention module)、Dropout层和有限矩阵乘积操作,有效地保证了特征提取的效果。为了有效降低网络的复杂度,本文将空洞卷积和轻量型特征融合模块相结合,一方面降低了网络的计算量,另一方面减少了常规卷积带来的特征冗余问题。除此之外,本文采用Dropout层和数据增强手段,提高了网络的泛化能力,缓解了过拟合问题。将该方法在FaultSeg3D数据集上进行实验,结果表明,LF-SeNet的参数量为2.56M,浮点运算次数相较于传统的U型网络降低了95.59G,交并比提升了2%。最后,本文使用三维数据合成技术将断层识别图进行可视化操作,实验结果显示LF-SeNet识别出的断层连续且清晰,说明该网络具有较好的泛化能力,证明了LF-SeNet在断层识别问题中的有效性。 展开更多
关键词 语义分割 SimAM 三维深度可分离卷积 断层识别
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部