期刊文献+
共找到33,060篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network 被引量:1
1
作者 Qiaoli Wang Dongping Sheng +7 位作者 Chengzhi Wu Xiaojie Ou Shengdong Yao Jingkai Zhao Feili Li Wei Li Jianmeng Chen 《Journal of Environmental Sciences》 2025年第2期126-138,共13页
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ... Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution. 展开更多
关键词 OZONE Spatiotemporal distribution Convolutional neural network Ozone formation rules Incremental reactivity
原文传递
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
2
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults Convolutional neural network Fault label Isolated fracture-vug system distribution patterns
原文传递
Distribution network gray-start and emergency recovery strategy with pumped storage unit under a typhoon 被引量:1
3
作者 Zhenguo Wang Hui Hou +4 位作者 Chao Liu Shaohua Wang Zhengtian Li Xiangning Lin Te Li 《Global Energy Interconnection》 2025年第1期121-133,共13页
Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu... Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy. 展开更多
关键词 Wind and photovoltaic generation prediction Pumped storage unit Gray-start distribution network Emergency recovery strategy
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
4
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
5
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Reconfiguration and Optimal Positioning of Multiple-Point Capacitors in a High-Voltage Distribution Network Using the NSGAII
6
作者 Arouna Oloulade Richard Gilles Agbokpanzo +6 位作者 Maurel Richy Aza-Gnandji Hassane Ousseyni Ibrahim Moussa Gonda Eméric Tokoudagba Juliano Sétondji François-Xavier Fifatin Adolphe Moukengue Imano 《Open Journal of Applied Sciences》 2025年第2期501-516,共16页
The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively ... The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads. 展开更多
关键词 RECONFIGURATION Capacitor Bank NSGA II Dynamic network Degradation distribution network Reliability
在线阅读 下载PDF
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
7
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Peer-to-peer transaction with voltage management strategy in distribution network considering trading risk
8
作者 Lei Dong Kuang Zhang +3 位作者 Shiming Zhang Tao Zhang Ye Li Ji Qiao 《Global Energy Interconnection》 2025年第4期685-699,共15页
P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods base... P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions. 展开更多
关键词 P2P transaction DOE RC-NUC distribution network distributed algorithm
在线阅读 下载PDF
Coordinated optimization of P2P energy trading and network operation for active distribution network with multi-microgrids
9
作者 Peishuai Li Yihan Wang +3 位作者 Tao Zheng Yulong Jin Weizhi Yuan Wenwen Guo 《Global Energy Interconnection》 2025年第3期474-485,共12页
Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MG... Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MGs. This paper proposes a distributedco-optimization method for peer-to-peer (P2P) energy trading and network operation for an ADN integrated with multiple microgrids(MMGs). A framework that optimizes P2P energy trading among MMGs and ADN operations was first established. Subsequently, anenergy management model that aims to minimize the operation and energy trading costs was constructed for each MG. Accordingly, theMMGs’ cooperative game model was established based on Nash bargaining theory to incentivize each stakeholder to participate in P2Penergy trading, and a distributed solution method based on the alternating direction method of multipliers was developed. Moreover, analgorithm that adjusts the amount of energy trading between the ADN and MG is proposed to ensure safe operation of the distributionnetwork. With the communication between the MG and ADN, the MMGs’ P2P trading and ADN operations are optimized in a coordinated manner. Finally, numerical simulations were conducted to verify the accuracy and effectiveness of the proposed method. 展开更多
关键词 Peer-to-peer energy trading Game theory distributed algorithm distribution network operation
在线阅读 下载PDF
Novel Low-Carbon Optimal Operation Method for Flexible Distribution Network Based on Carbon Emission Flow
10
作者 Chao Gao Kai Niu +3 位作者 Wenjing Chen Changwei Wang Yabin Chen Rui Qu 《Energy Engineering》 2025年第2期785-803,共19页
With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FD... With the widespread implementation of distributed generation(DG)and the integration of soft open point(SOP)into the distribution network(DN),the latter is steadily transitioning into a flexible distribution network(FDN),the calculation of carbon flow distribution in FDN is more difficult.To this end,this study constructs a model for low-carbon optimal operations within the FDN on the basis of enhanced carbon emission flow(CEF).First,the carbon emission characteristics of FDNs are scrutinized and an improved method for calculating carbon flow within these networks is proposed.Subsequently,a model for optimizing low-carbon operations within FDNs is formulated based on the refined CEF,which merges the specificities of DG and intelligent SOP.Finally,this model is scrutinized using an upgraded IEEE 33-node distribution system,a comparative analysis of the cases reveals that when DG and SOP are operated in a coordinated manner in the FDN,with the cost of electricity generation was reduced by 40.63 percent and the cost of carbon emissions by 10.18 percent.The findings indicate that the judicious optimization of areas exhibiting higher carbon flow rates can effectively enhance the economic efficiency of DN operations and curtail the carbon emissions of the overall network. 展开更多
关键词 Flexible distribution network carbon emission flow distributed generation soft open points
在线阅读 下载PDF
Energy storage configuration model for reliability services of active distribution networks
11
作者 Yaqi Sun Wenchuan Wu +3 位作者 Yue Zhou Haotian Zhao Shuwei Xu Qi Wang 《iEnergy》 2025年第3期149-156,共8页
The volatility introduced by the integration of renewable energy poses challenges to the reliability of power supply,increasing the demand for energy storage in distribution networks.Shared energy storage in distribut... The volatility introduced by the integration of renewable energy poses challenges to the reliability of power supply,increasing the demand for energy storage in distribution networks.Shared energy storage in distribution networks can participate in energy storage allocation as a provider of reliability ancillary services.This paper proposes a novel Nash bargaining based energy storage coordinated allocation method to fully incentivize shared energy storage to participate in reliability services within the distribution network.First,an analytical reliability assessment model is constructed and embedded into the energy storage allocation model,where the impact of renewable energy uncertainty is described using chance constraints.Considering the interests of both the distribution network and shared energy storage operators,a Nash bargaining based energy storage coordinated allocation and benefit sharing mechanism is established,which is then transformed into a mixed-integer linear programming(MILP)model for efficient solution.Case studies show that the proposed method,through cooperation between the distribution system operator and shared energy storage operators,signif-icantly reduces investment cost of energy storage and ensures a rational distribution of the benefits obtained. 展开更多
关键词 distribution network energy storage game theory RELIABILITY
在线阅读 下载PDF
Resource Allocation for Emergency Communications in Distribution Network Satellite Communication System
12
作者 Xie Haoran Zhan Yafeng Fang Xin 《China Communications》 2025年第2期95-111,共17页
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th... Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms. 展开更多
关键词 distribution network emergency communication resource scheduling satellite communication
在线阅读 下载PDF
Advanced Nodal Pricing Strategies for Modern Power Distribution Networks:Enhancing Market Efficiency and System Reliability
13
作者 Ganesh Wakte Mukesh Kumar +2 位作者 Mohammad Aljaidi Ramesh Kumar Manish Kumar Singla 《Energy Engineering》 2025年第6期2519-2537,共19页
Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of ... Nodal pricing is a critical mechanism in electricity markets,utilized to determine the cost of power transmission to various nodes within a distribution network.As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations,traditional nodal pricing models often fall short to meet these new challenges.This research introduces a novel enhanced nodal pricing mechanism for distribution networks,integrating advanced optimization techniques and hybrid models to overcome these limitations.The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and system reliability.This study leverages cutting-edge hybrid algorithms,combining elements of machine learning with conventional optimization methods,to achieve superior performance.Key findings demonstrate that the proposed hybrid nodal pricing model significantly reduces pricing errors and operational costs compared to conventional methods.Through extensive simulations and comparative analysis,the model exhibits enhanced performance under varying load conditions and increased levels of renewable energy integration.The results indicate a substantial improvement in pricing precision and network stability.This study contributes to the ongoing discourse on optimizing electricity market mechanisms and provides actionable insights for policymakers and utility operators.By addressing the complexities of modern power distribution systems,our research offers a robust solution that enhances the efficiency and reliability of power distribution networks,marking a significant advancement in the field. 展开更多
关键词 Nodal pricing distribution networks optimization renewable energy pricing accuracy system reliability
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
14
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 distribution network Loss reduction measures ECONOMY Optimization model Tabu search algorithm
在线阅读 下载PDF
Digital twin-based resilience evaluation and intelligent strategies of smart urban water distribution networks for emergency management
15
作者 Hongyan Dui Taiyu Cao Fan Wang 《Resilient Cities and Structures》 2025年第1期41-52,共12页
Resilient smart urban water distribution networks are essential to ensure smooth urban operation and maintain daily water services.However,the dynamics and complexity of smart water distribution networks make its re-s... Resilient smart urban water distribution networks are essential to ensure smooth urban operation and maintain daily water services.However,the dynamics and complexity of smart water distribution networks make its re-silience study face many challenges.The introduction of digital twin technology provides an innovative solution for the resilience study of smart water distribution networks,which can more effectively support the network’s real-time monitoring and intelligent control.This paper proposes a digital twin architecture of smart water dis-tribution networks,laying the foundation for the resilience assessment of water distribution networks.Based on this,a performance evaluation model based on user satisfaction is proposed,which can more intuitively and effectively reflect the performance of urban water supply services.Meanwhile,we propose a method to quantify the importance of water distribution pipes’residual resilience,considering the time value to optimize the re-covery sequence of failed pipes and develop targeted preventive maintenance strategies.Finally,to validate the effectiveness of the proposed method,this paper applies it to a water distribution network.The results show that the proposed method can significantly improve the resilience and enhance the overall resilience of smart urban water distribution networks. 展开更多
关键词 Digital twin Smart water distribution network Resilience evaluation Importance measure
在线阅读 下载PDF
Security distance analysis of active distribution network considering energy hub demand response
16
作者 Rui Ma Qi Zhou +2 位作者 Shengyang Liu Qin Yan Mo Shi 《Global Energy Interconnection》 2025年第1期160-173,共14页
This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar ... This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system. 展开更多
关键词 Active distribution network Energy hub Security distance Base station load Air-conditioning load
在线阅读 下载PDF
Protection path and security-metric-based resource allocation algorithm in quantum key distribution optical networks
17
作者 Li Liu Shengtong Zhai +1 位作者 Yao Pu Xu Zhang 《Chinese Physics B》 2025年第9期73-83,共11页
Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problem... Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problems in the network can become more severe because each fiber link has limited resources(such as wavelengths and time slots).In addition,QKD optical networks are also affected by external disturbances such as data interception and eavesdropping,resulting in inefficient network communication.In this paper,we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network.By introducing the concept of security metric,we propose a routing wavelength and time slot allocation algorithm(RWTA)based on protection path,which can lessen the blocking problem of QKD optical network.According to simulation analysis,the security-metric-based RWTA algorithm(SM-RWTA)proposed in this paper can substantially improve the success rate of security key(SK)update and significantly reduce the blocking rate of the network.It can also improve the utilization rate of resources such as wavelengths and time slots.Compared with the non-security-metric-based RWTA algorithm(NSM-RWTA),our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks. 展开更多
关键词 quantum key distribution(QKD) optical network security metric protection path
原文传递
Enhancing operational planning of active distribution networks considering effective topology selection and thermal energy storage
18
作者 Vineeth Vijayan Ali Arzani Satish M.Mahajan 《iEnergy》 2025年第2期98-106,共9页
Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and pea... Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network. 展开更多
关键词 Operational planning power distribution network PV inverters thermal energy storage systems topology selection
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting
19
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on the Modified IEEE 33-Bus System
20
作者 Haoyuan Li Lingling Li 《Energy Engineering》 2025年第4期1337-1358,共22页
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo... Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%. 展开更多
关键词 distribution network planning frank-copula joint output model bilevel programming theory
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部