To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances...To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on co...Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared to the original data and traditional SMOTE. The proposed method (NR-Clustering SMOTE) improves accuracy by 15.34% on the Pima dataset and 20.96% on the Haberman dataset compared to SMOTE-LOF. Compared to Radius-SMOTE, this method increases accuracy by 3.16% on the Pima dataset and 13.24% on the Haberman dataset. Meanwhile, compared to RN-SMOTE, the accuracy improvement reaches 15.56% on the Pima dataset and 19.84% on the Haberman dataset. This research result implies that the proposed method experiences consistent performance improvement compared to traditional SMOTE and its latest variants, such as SMOTE-LOF, Radius-SMOTE, and RN-SMOTE, in solving imbalanced health data with class binaries.展开更多
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter...With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
The effects of geographic factors on information dissemination among investors have been extensively studied;however,the relationship between the geographical distance and stock price synchronization remains unclear.G...The effects of geographic factors on information dissemination among investors have been extensively studied;however,the relationship between the geographical distance and stock price synchronization remains unclear.Grounded in information asymmetry theory,this study investigates the impact of geographical distance on stock price synchronization in the Chinese stock market.Using the data from the Shanghai and Shenzhen Stock Exchanges,we find that a greater geographical distance between mutual funds and firms considerably increases stock price synchronization,highlighting a strong positive relationship.Additional analysis show that firms in the regions with better external and internal governance,benefit more from reduced information asymmetry,than those in less regulated or transparent regions.These results have key implications for institutional investors and policymakers aiming to enhance information dissemination and market integration in China.展开更多
Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted t...Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted to develop conversion models between the acceleration response spectrum(SA)and the pseudo-acceleration response spectrum(PSA).Our previous studies found that the relationship between SA and PSA is affected by magnitude,distance,and site class.Subsequently,we developed an SA/PSA model incorporating these effects.However,this model is suitable for cases with small and moderate magnitudes and its accuracy is not good enough for cases with large magnitudes.This paper aims to develop an efficient SA/PSA model by considering influences of magnitude,distance,and site class,which can be applied to cases not only with small or moderate magnitudes but also with large ones.For this purpose,regression analyses were conducted using 16,660 horizontal seismic records with a wider range of magnitude.The magnitude of these seismic records varies from 4 to 9 and the distances vary from 10 to 200 km.These ground motions were recorded at 338 stations covering four site classes.By comparing them with existing models,it was found that the proposed model shows better accuracy for cases with any magnitudes,distances,and site classes considered in this study.展开更多
Laser frequency combs,which are composed of a series of equally spaced coherent frequency components,have triggered revolutionary progress in precision spectroscopy and optical metrology.Length/distance is of fundamen...Laser frequency combs,which are composed of a series of equally spaced coherent frequency components,have triggered revolutionary progress in precision spectroscopy and optical metrology.Length/distance is of fundamental importance in both science and technology.We describe a ranging scheme based on chirped pulse interferometry.In contrast to the traditional spectral interferometry,the local oscillator is strongly chirped which is able to meet the measurement pulses at arbitrary distances,and therefore,the dead zones can be removed.The distances can be precisely determined via two measurement steps based on the time-of-flight method and synthetic wavelength interferometry,respectively.To overcome the speed limitation of the optical spectrum analyzer,the spectrograms are stretched and detected by a fast photodetector and oscilloscope and consequently mapped into the time domain in real time.The experimental results indicate that the measurement uncertainty can be well within±2μm,compared with the reference distance meter.The Allan deviation can reach 0.4μm at 4 ns averaging time and 25 nm at 1μs and can achieve 2 nm at 100μs averaging time.We also measured a spinning disk with grooves of different depths to verify the measurement speed,and the results show that the grooves with about 150 m∕s line speed can be clearly captured.Our method provides a unique combination of non-dead zones,ultrafast measurement speed,high precision and accuracy,large ambiguity range,and only one single comb source.This system could offer a powerful solution for field measurements in practical applications in the future.展开更多
As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique ...As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.展开更多
This study aims to investigate the minimum required seismic gap distance based on the avoidance of shear failure for reinforced concrete(RC)buildings with potential floor-to-column pounding.Twenty different adjacent m...This study aims to investigate the minimum required seismic gap distance based on the avoidance of shear failure for reinforced concrete(RC)buildings with potential floor-to-column pounding.Twenty different adjacent models reflecting low and mid-rise buildings were created.Dynamic analyses were performed by selecting 11 earthquake record pairs compatible with the Turkish Building Earthquake Code(TBEC-2018).Two different cases were considered to determine the minimum required seismic gap distance.In the first case(named as Case-1),the gap distances between neighboring buildings were determined to avoid collisions during each acceleration record.The required distances calculated from the analyses were compared with the minimum seismic gap requirements of the TBEC-2018.The outcomes indicate that theαcoefficient recommended in TBEC-2018 for adjacent buildings with a potential floor-to-column pounding is sufficient for adjacent buildings with a period ratio of 1 to 1.5.The gap distances in the first case were then reduced by an iterative process to determine the distance at which the shear demand equals the shear strength(named as Case-2).The calculated gap distances to prevent shear failure(Case-2)are approximately 6%to 19%lower than the distances determined for avoidance of pounding(Case-1).展开更多
A graph whose edges are labeled either as positive or negative is called a signed graph.Hameed et al.introduced signed distance and distance compatibility in 2021,initially to characterize balanced signed graphs which...A graph whose edges are labeled either as positive or negative is called a signed graph.Hameed et al.introduced signed distance and distance compatibility in 2021,initially to characterize balanced signed graphs which have nice spectral properties.This article mainly studies the conjecture proposed by Shijin et al.on the distance compatibility of the direct product of signed graphs,and provides necessary and sufficient conditions for the distance compatibility of the direct product of signed graphs.Some further questions regarding distance compatibility are also posed.展开更多
The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational re...The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.展开更多
This study presents an efficient feature selection method based on the Gower distance to enhance the accuracy and efficiency of standard classifiers on high-dimensional medical datasets.High-dimensional data poses sig...This study presents an efficient feature selection method based on the Gower distance to enhance the accuracy and efficiency of standard classifiers on high-dimensional medical datasets.High-dimensional data poses significant challenges for traditional classifiers due to feature redundancy or being irrelevant.The proposed method addresses these challenges by partitioning the dataset into blocks,calculating the Gower distance within each block,and selecting features based on their average similarity.Technically,the Gower distance normalizes the absolute difference between numerical features,ensuring that each feature contributes equally to the distance calculation.This normalization prevents features with larger scales from overshadowing those with smaller scales.This process facilitates the identification of features that exhibit high harmony and are the most relevant for classification.The proposed feature selection strategy significantly reduces dimensionality,retains the most relevant features,and improves model performance.Experimental results show that the accuracy for the classifiers including k-nearest neighbors(KNN),naive Bayes(NB),decision tree(DT),random forest(RF),support vector machine(SVM),and logistic regression(LR)was increased by 4.38%-7.02%.Besides,the reduction in the feature set size contributes to a considerable decrease in computational complexity and thus faster diagnosis speed.The execution time was averagely reduced by 77.82%for all samples and 76.45%for one sample.These results demonstrate that the proposed feature selection method shows enhanced performance on both prediction accuracy and diagnostic speed,making it a promising tool for real-time clinical decision-making and improving patient care outcomes.展开更多
Let M_(n,p)=(X_(i,k))_(n×p)be an n×p random matrix whose p columns X^((1)),...,X^((p))are an n-dimensional i.i.d.random sample of size p from 1-dependent Gaussian populations.Instead of investigating the spe...Let M_(n,p)=(X_(i,k))_(n×p)be an n×p random matrix whose p columns X^((1)),...,X^((p))are an n-dimensional i.i.d.random sample of size p from 1-dependent Gaussian populations.Instead of investigating the special case where p and n are comparable,we consider a much more general case in which log n=o(p^(1/3)).We prove that the maximum interpoint distance Mn=max{|X_(i)-X_(j)|;1≤i<j≤n}converges to an extreme-value distribution,where X_(i)and X_(j)denote the i-th and j-th row of M_(n,p),respectively.The proofs are completed by using the Chen-Stein Poisson approximation method and the moderation deviation principle.展开更多
This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar ...This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB2603602)the National Natural Science Foundation of China(Nos.52222810 and 52178383).
文摘To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金supported by the Sichuan Science and Technology Program(Nos.2024JDRC0100 and 2023YFQ0091)the National Natural Science Foundation of China(Nos.U21A20167 and 52475138)the Scientific Research Foundation of the State Key Laboratory of Rail Transit Vehicle System(No.2024RVL-T08).
文摘Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
基金funded by Universitas Negeri Malang,contract number 4.4.841/UN32.14.1/LT/2024.
文摘An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared to the original data and traditional SMOTE. The proposed method (NR-Clustering SMOTE) improves accuracy by 15.34% on the Pima dataset and 20.96% on the Haberman dataset compared to SMOTE-LOF. Compared to Radius-SMOTE, this method increases accuracy by 3.16% on the Pima dataset and 13.24% on the Haberman dataset. Meanwhile, compared to RN-SMOTE, the accuracy improvement reaches 15.56% on the Pima dataset and 19.84% on the Haberman dataset. This research result implies that the proposed method experiences consistent performance improvement compared to traditional SMOTE and its latest variants, such as SMOTE-LOF, Radius-SMOTE, and RN-SMOTE, in solving imbalanced health data with class binaries.
文摘With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金supported by the National Natural Science Foundation of China(72141304,72201190).
文摘The effects of geographic factors on information dissemination among investors have been extensively studied;however,the relationship between the geographical distance and stock price synchronization remains unclear.Grounded in information asymmetry theory,this study investigates the impact of geographical distance on stock price synchronization in the Chinese stock market.Using the data from the Shanghai and Shenzhen Stock Exchanges,we find that a greater geographical distance between mutual funds and firms considerably increases stock price synchronization,highlighting a strong positive relationship.Additional analysis show that firms in the regions with better external and internal governance,benefit more from reduced information asymmetry,than those in less regulated or transparent regions.These results have key implications for institutional investors and policymakers aiming to enhance information dissemination and market integration in China.
基金National Natural Science Foundation of China under Grant No.52278135。
文摘Both acceleration and pseudo-acceleration response spectra play important roles in structural seismic design.However,only one of them is generally provided in most seismic codes.Therefore,many studies have attempted to develop conversion models between the acceleration response spectrum(SA)and the pseudo-acceleration response spectrum(PSA).Our previous studies found that the relationship between SA and PSA is affected by magnitude,distance,and site class.Subsequently,we developed an SA/PSA model incorporating these effects.However,this model is suitable for cases with small and moderate magnitudes and its accuracy is not good enough for cases with large magnitudes.This paper aims to develop an efficient SA/PSA model by considering influences of magnitude,distance,and site class,which can be applied to cases not only with small or moderate magnitudes but also with large ones.For this purpose,regression analyses were conducted using 16,660 horizontal seismic records with a wider range of magnitude.The magnitude of these seismic records varies from 4 to 9 and the distances vary from 10 to 200 km.These ground motions were recorded at 338 stations covering four site classes.By comparing them with existing models,it was found that the proposed model shows better accuracy for cases with any magnitudes,distances,and site classes considered in this study.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2204601)the National Natural Science Foundation of China(Grant Nos.11925503 and 12275093)+1 种基金the Natural Science Foundation of Hubei Province(Grant No.2021CFB019)the State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A10).
文摘Laser frequency combs,which are composed of a series of equally spaced coherent frequency components,have triggered revolutionary progress in precision spectroscopy and optical metrology.Length/distance is of fundamental importance in both science and technology.We describe a ranging scheme based on chirped pulse interferometry.In contrast to the traditional spectral interferometry,the local oscillator is strongly chirped which is able to meet the measurement pulses at arbitrary distances,and therefore,the dead zones can be removed.The distances can be precisely determined via two measurement steps based on the time-of-flight method and synthetic wavelength interferometry,respectively.To overcome the speed limitation of the optical spectrum analyzer,the spectrograms are stretched and detected by a fast photodetector and oscilloscope and consequently mapped into the time domain in real time.The experimental results indicate that the measurement uncertainty can be well within±2μm,compared with the reference distance meter.The Allan deviation can reach 0.4μm at 4 ns averaging time and 25 nm at 1μs and can achieve 2 nm at 100μs averaging time.We also measured a spinning disk with grooves of different depths to verify the measurement speed,and the results show that the grooves with about 150 m∕s line speed can be clearly captured.Our method provides a unique combination of non-dead zones,ultrafast measurement speed,high precision and accuracy,large ambiguity range,and only one single comb source.This system could offer a powerful solution for field measurements in practical applications in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20598 and 52104107)the"Qinglan Project"of Jiangsu Colleges and Universities,Young Elite Scientists Sponsorship Program of Jiangsu Province(Grant No.TJ-2023-086).
文摘As coal mining progresses to greater depths,controlling the stability of surrounding rock in deep roadways has become an increasingly complex challenge.Although four-dimensional(4D)support theoretically offers unique advantages in maintaining the stability of rock mass,the disaster evolution processes and multi-source information response characteristics in deep roadways with 4D support remain unclear.Consequently,a large-scale physical model testing system and self-designed 4D support components were employed to conduct similarity model tests on the surrounding rock failure process under unsupported(U-1),traditional bolt-mesh-cable support(T-2),and 4D support(4D-R-3)conditions.Combined with multi-source monitoring techniques,including stress–strain,digital image correlation(DIC),acoustic emission(AE),microseismic(MS),parallel electric(PE),and electromagnetic radiation(EMR),the mechanical behavior and multi-source information responses were comprehensively analyzed.The results show that the peak stress and displacement of the models are positively correlated with the support strength.The multi-source information exhibits distinct response characteristics under different supports.The response frequency,energy,and fluctuationsof AE,MS,and EMR signals,along with the apparent resistivity(AR)high-resistivity zone,follow the trend U-1>T-2>4D-R-3.Furthermore,multi-source information exhibits significantdifferences in sensitivity across different phases.The AE,MS,and EMR signals exhibit active responses to rock mass activity at each phase.However,AR signals are only sensitive to the fracture propagation during the plastic yield and failure phases.In summary,the 4D support significantlyenhances the bearing capacity and plastic deformation of the models,while substantially reducing the frequency,energy,and fluctuationsof multi-source signals.
文摘This study aims to investigate the minimum required seismic gap distance based on the avoidance of shear failure for reinforced concrete(RC)buildings with potential floor-to-column pounding.Twenty different adjacent models reflecting low and mid-rise buildings were created.Dynamic analyses were performed by selecting 11 earthquake record pairs compatible with the Turkish Building Earthquake Code(TBEC-2018).Two different cases were considered to determine the minimum required seismic gap distance.In the first case(named as Case-1),the gap distances between neighboring buildings were determined to avoid collisions during each acceleration record.The required distances calculated from the analyses were compared with the minimum seismic gap requirements of the TBEC-2018.The outcomes indicate that theαcoefficient recommended in TBEC-2018 for adjacent buildings with a potential floor-to-column pounding is sufficient for adjacent buildings with a period ratio of 1 to 1.5.The gap distances in the first case were then reduced by an iterative process to determine the distance at which the shear demand equals the shear strength(named as Case-2).The calculated gap distances to prevent shear failure(Case-2)are approximately 6%to 19%lower than the distances determined for avoidance of pounding(Case-1).
基金Supported by the National Natural Science Foundation of China(Grant No.12071260)。
文摘A graph whose edges are labeled either as positive or negative is called a signed graph.Hameed et al.introduced signed distance and distance compatibility in 2021,initially to characterize balanced signed graphs which have nice spectral properties.This article mainly studies the conjecture proposed by Shijin et al.on the distance compatibility of the direct product of signed graphs,and provides necessary and sufficient conditions for the distance compatibility of the direct product of signed graphs.Some further questions regarding distance compatibility are also posed.
基金supported by National Natural Science Foundation of China(22161142018,21991081,22177056,and 22174074)the Ministry of Science and Technology of China(2021YFA1600304).
文摘The distance distributions between two site-specifically anchored spin labels in a protein,measured by pulsed electron-electron double resonance(PELDOR or DEER),provide rich sources of structural and conformational restraints on the proteins or their complexes.The rigid connection of the nitroxide spin label to the protein improves the accuracy and precision of distance measurement.We report a new spin labelling approach by formation of thioester bond between nitroxide(NO)spin label,NOAI(NO spin labels activated by acetylimidazole),and a protein thiol,and this spin labeling method has demonstrated high performance in DEER distance measurement on proteins.The results showed that NOAI has shorter connection to the protein ligation site than 2,2,5,5-tetramethyl-pyrroline-1-oxyl methanethiosulfonate(MTSL)and 3-maleimido-proxyl(M-Prox)in the respective protein conjugate and produces narrower distance distributions for the tested proteins including ubiquitin(Ub),immunoglobulin-binding b1 domain of streptococcal protein G(GB1),and second mitochondria-derived activator of caspases(Smac).The NOAI protein conjugate connected by a thioester bond is resistant to reducing reagent and offers highfidelity DEER distance measurements in cell lysates.
文摘This study presents an efficient feature selection method based on the Gower distance to enhance the accuracy and efficiency of standard classifiers on high-dimensional medical datasets.High-dimensional data poses significant challenges for traditional classifiers due to feature redundancy or being irrelevant.The proposed method addresses these challenges by partitioning the dataset into blocks,calculating the Gower distance within each block,and selecting features based on their average similarity.Technically,the Gower distance normalizes the absolute difference between numerical features,ensuring that each feature contributes equally to the distance calculation.This normalization prevents features with larger scales from overshadowing those with smaller scales.This process facilitates the identification of features that exhibit high harmony and are the most relevant for classification.The proposed feature selection strategy significantly reduces dimensionality,retains the most relevant features,and improves model performance.Experimental results show that the accuracy for the classifiers including k-nearest neighbors(KNN),naive Bayes(NB),decision tree(DT),random forest(RF),support vector machine(SVM),and logistic regression(LR)was increased by 4.38%-7.02%.Besides,the reduction in the feature set size contributes to a considerable decrease in computational complexity and thus faster diagnosis speed.The execution time was averagely reduced by 77.82%for all samples and 76.45%for one sample.These results demonstrate that the proposed feature selection method shows enhanced performance on both prediction accuracy and diagnostic speed,making it a promising tool for real-time clinical decision-making and improving patient care outcomes.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1177117812171198)+2 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101467JC)the Technology Program of Jilin Educational Department During the“14th Five-Year”Plan Period(Grant No.JJKH20241239KJ)the Fundamental Research Funds for the Central Universities.
文摘Let M_(n,p)=(X_(i,k))_(n×p)be an n×p random matrix whose p columns X^((1)),...,X^((p))are an n-dimensional i.i.d.random sample of size p from 1-dependent Gaussian populations.Instead of investigating the special case where p and n are comparable,we consider a much more general case in which log n=o(p^(1/3)).We prove that the maximum interpoint distance Mn=max{|X_(i)-X_(j)|;1≤i<j≤n}converges to an extreme-value distribution,where X_(i)and X_(j)denote the i-th and j-th row of M_(n,p),respectively.The proofs are completed by using the Chen-Stein Poisson approximation method and the moderation deviation principle.
基金supported in part by the National Nat-ural Science Foundation of China(No.51977012,No.52307080).
文摘This study proposes a method for analyzing the security distance of an Active Distribution Network(ADN)by incorporating the demand response of an Energy Hub(EH).Taking into account the impact of stochastic wind-solar power and flexible loads on the EH,an interactive power model was developed to represent the EH’s operation under these influences.Additionally,an ADN security distance model,integrating an EH with flexible loads,was constructed to evaluate the effect of flexible load variations on the ADN’s security distance.By considering scenarios such as air conditioning(AC)load reduction and base station(BS)load transfer,the security distances of phases A,B,and C increased by 17.1%,17.2%,and 17.7%,respectively.Furthermore,a multi-objective optimal power flow model was formulated and solved using the Forward-Backward Power Flow Algorithm,the NSGA-II multi-objective optimization algo-rithm,and the maximum satisfaction method.The simulation results of the IEEE33 node system example demonstrate that after opti-mization,the total energy cost for one day is reduced by 0.026%,and the total security distance limit of the ADN’s three phases is improved by 0.1 MVA.This method effectively enhances the security distance,facilitates BS load transfer and AC load reduction,and contributes to the energy-saving,economical,and safe operation of the power system.