Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances...To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.展开更多
When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes...When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimiz...This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.展开更多
Detecting faces under occlusion remains a significant challenge in computer vision due to variations caused by masks,sunglasses,and other obstructions.Addressing this issue is crucial for applications such as surveill...Detecting faces under occlusion remains a significant challenge in computer vision due to variations caused by masks,sunglasses,and other obstructions.Addressing this issue is crucial for applications such as surveillance,biometric authentication,and human-computer interaction.This paper provides a comprehensive review of face detection techniques developed to handle occluded faces.Studies are categorized into four main approaches:feature-based,machine learning-based,deep learning-based,and hybrid methods.We analyzed state-of-the-art studies within each category,examining their methodologies,strengths,and limitations based on widely used benchmark datasets,highlighting their adaptability to partial and severe occlusions.The review also identifies key challenges,including dataset diversity,model generalization,and computational efficiency.Our findings reveal that deep learning methods dominate recent studies,benefiting from their ability to extract hierarchical features and handle complex occlusion patterns.More recently,researchers have increasingly explored Transformer-based architectures,such as Vision Transformer(ViT)and Swin Transformer,to further improve detection robustness under challenging occlusion scenarios.In addition,hybrid approaches,which aim to combine traditional andmodern techniques,are emerging as a promising direction for improving robustness.This review provides valuable insights for researchers aiming to develop more robust face detection systems and for practitioners seeking to deploy reliable solutions in real-world,occlusionprone environments.Further improvements and the proposal of broader datasets are required to developmore scalable,robust,and efficient models that can handle complex occlusions in real-world scenarios.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geograph...Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geographical study was conducted in Arizona State,USA,to examine monthly precipi-tation concentration rates over time.This analysis used a high-resolution 0.50×0.50 grid for monthly precip-itation data from 1961 to 2022,Provided by the Climatic Research Unit.The study aimed to analyze climatic changes affected the first and last five years of each decade,as well as the entire decade,during the specified period.GIS was used to meet the objectives of this study.Arizona experienced 51–568 mm,67–560 mm,63–622 mm,and 52–590 mm of rainfall in the sixth,seventh,eighth,and ninth decades of the second millennium,respectively.Both the first and second five year periods of each decade showed accept-able rainfall amounts despite fluctuations.However,rainfall decreased in the first and second decades of the third millennium.and in the first two years of the third decade.Rainfall amounts dropped to 42–472 mm,55–469 mm,and 74–498 mm,respectively,indicating a downward trend in precipitation.The central part of the state received the highest rainfall,while the eastern and western regions(spanning north to south)had significantly less.Over the decades of the third millennium,the average annual rainfall every five years was relatively low,showing a declining trend due to severe climate changes,generally ranging between 35 mm and 498 mm.The central regions consistently received more rainfall than the eastern and western outskirts.Arizona is currently experiencing a decrease in rainfall due to climate change,a situation that could deterio-rate further.This highlights the need to optimize the use of existing rainfall and explore alternative water sources.展开更多
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi...Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.展开更多
The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficu...The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.展开更多
Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus o...Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.展开更多
This study investigated the impacts of random negative training datasets(NTDs)on the uncertainty of machine learning models for geologic hazard susceptibility assessment of the Loess Plateau,northern Shaanxi Province,...This study investigated the impacts of random negative training datasets(NTDs)on the uncertainty of machine learning models for geologic hazard susceptibility assessment of the Loess Plateau,northern Shaanxi Province,China.Based on randomly generated 40 NTDs,the study developed models for the geologic hazard susceptibility assessment using the random forest algorithm and evaluated their performances using the area under the receiver operating characteristic curve(AUC).Specifically,the means and standard deviations of the AUC values from all models were then utilized to assess the overall spatial correlation between the conditioning factors and the susceptibility assessment,as well as the uncertainty introduced by the NTDs.A risk and return methodology was thus employed to quantify and mitigate the uncertainty,with log odds ratios used to characterize the susceptibility assessment levels.The risk and return values were calculated based on the standard deviations and means of the log odds ratios of various locations.After the mean log odds ratios were converted into probability values,the final susceptibility map was plotted,which accounts for the uncertainty induced by random NTDs.The results indicate that the AUC values of the models ranged from 0.810 to 0.963,with an average of 0.852 and a standard deviation of 0.035,indicating encouraging prediction effects and certain uncertainty.The risk and return analysis reveals that low-risk and high-return areas suggest lower standard deviations and higher means across multiple model-derived assessments.Overall,this study introduces a new framework for quantifying the uncertainty of multiple training and evaluation models,aimed at improving their robustness and reliability.Additionally,by identifying low-risk and high-return areas,resource allocation for geologic hazard prevention and control can be optimized,thus ensuring that limited resources are directed toward the most effective prevention and control measures.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion in...Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion intention recognition system based on time series data sets derived from human motion signals.Composed of input data and Deep Learning(DL)algorithms,this framework enables the detection and prediction of users’movement patterns.This makes it possible to predict the detection of locomotion modes,allowing the LLEs to provide smooth and seamless assistance.The pre-processed eight subjects were used as input to classify four scenes:Standing/Walking on Level Ground(S/WOLG),Up the Stairs(US),Down the Stairs(DS),and Walking on Grass(WOG).The result showed that the ResNet performed optimally compared to four algorithms(CNN,CNN-LSTM,ResNet,and ResNet-Att)with an approximate evaluation indicator of 100%.It is expected that the proposed locomotion intention system will significantly improve the safety and the effectiveness of LLE due to its high accuracy and predictive performance.展开更多
This paper proposed a method to generate semi-experimental biomedical datasets based on full-wave simulation software.The system noise such as antenna port couplings is fully considered in the proposed datasets,which ...This paper proposed a method to generate semi-experimental biomedical datasets based on full-wave simulation software.The system noise such as antenna port couplings is fully considered in the proposed datasets,which is more realistic than synthetical datasets.In this paper,datasets containing different shapes are constructed based on the relative permittivities of human tissues.Then,a back-propagation scheme is used to obtain the rough reconstructions,which will be fed into a U-net convolutional neural network(CNN)to recover the high-resolution images.Numerical results show that the network trained on the datasets generated by the proposed method can obtain satisfying reconstruction results and is promising to be applied in real-time biomedical imaging.展开更多
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to...This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.展开更多
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development...Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
基金supported by the National Key R&D Program of China(No.2023YFB2603602)the National Natural Science Foundation of China(Nos.52222810 and 52178383).
文摘To elucidate the fracturing mechanism of deep hard rock under complex disturbance environments,this study investigates the dynamic failure behavior of pre-damaged granite subjected to multi-source dynamic disturbances.Blasting vibration monitoring was conducted in a deep-buried drill-and-blast tunnel to characterize in-situ dynamic loading conditions.Subsequently,true triaxial compression tests incorporating multi-source disturbances were performed using a self-developed wide-low-frequency true triaxial system to simulate disturbance accumulation and damage evolution in granite.The results demonstrate that combined dynamic disturbances and unloading damage significantly accelerate strength degradation and trigger shear-slip failure along preferentially oriented blast-induced fractures,with strength reductions up to 16.7%.Layered failure was observed on the free surface of pre-damaged granite under biaxial loading,indicating a disturbance-induced fracture localization mechanism.Time-stress-fracture-energy coupling fields were constructed to reveal the spatiotemporal characteristics of fracture evolution.Critical precursor frequency bands(105-150,185-225,and 300-325 kHz)were identified,which serve as diagnostic signatures of impending failure.A dynamic instability mechanism driven by multi-source disturbance superposition and pre-damage evolution was established.Furthermore,a grouting-based wave-absorption control strategy was proposed to mitigate deep dynamic disasters by attenuating disturbance amplitude and reducing excitation frequency.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2024JC-YBMS-026).
文摘When dealing with imbalanced datasets,the traditional support vectormachine(SVM)tends to produce a classification hyperplane that is biased towards the majority class,which exhibits poor robustness.This paper proposes a high-performance classification algorithm specifically designed for imbalanced datasets.The proposed method first uses a biased second-order cone programming support vectormachine(B-SOCP-SVM)to identify the support vectors(SVs)and non-support vectors(NSVs)in the imbalanced data.Then,it applies the synthetic minority over-sampling technique(SV-SMOTE)to oversample the support vectors of the minority class and uses the random under-sampling technique(NSV-RUS)multiple times to undersample the non-support vectors of the majority class.Combining the above-obtained minority class data set withmultiple majority class datasets can obtainmultiple new balanced data sets.Finally,SOCP-SVM is used to classify each data set,and the final result is obtained through the integrated algorithm.Experimental results demonstrate that the proposed method performs excellently on imbalanced datasets.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
文摘This paper deeply discusses the causes of gear howling noise,the identification and analysis of multi-source excitation,the transmission path of dynamic noise,simulation and experimental research,case analysis,optimization effect,etc.,aiming to better provide a certain guideline and reference for relevant researchers.
基金funded by A’Sharqiyah University,Sultanate of Oman,under Research Project grant number(BFP/RGP/ICT/22/490).
文摘Detecting faces under occlusion remains a significant challenge in computer vision due to variations caused by masks,sunglasses,and other obstructions.Addressing this issue is crucial for applications such as surveillance,biometric authentication,and human-computer interaction.This paper provides a comprehensive review of face detection techniques developed to handle occluded faces.Studies are categorized into four main approaches:feature-based,machine learning-based,deep learning-based,and hybrid methods.We analyzed state-of-the-art studies within each category,examining their methodologies,strengths,and limitations based on widely used benchmark datasets,highlighting their adaptability to partial and severe occlusions.The review also identifies key challenges,including dataset diversity,model generalization,and computational efficiency.Our findings reveal that deep learning methods dominate recent studies,benefiting from their ability to extract hierarchical features and handle complex occlusion patterns.More recently,researchers have increasingly explored Transformer-based architectures,such as Vision Transformer(ViT)and Swin Transformer,to further improve detection robustness under challenging occlusion scenarios.In addition,hybrid approaches,which aim to combine traditional andmodern techniques,are emerging as a promising direction for improving robustness.This review provides valuable insights for researchers aiming to develop more robust face detection systems and for practitioners seeking to deploy reliable solutions in real-world,occlusionprone environments.Further improvements and the proposal of broader datasets are required to developmore scalable,robust,and efficient models that can handle complex occlusions in real-world scenarios.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
文摘Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geographical study was conducted in Arizona State,USA,to examine monthly precipi-tation concentration rates over time.This analysis used a high-resolution 0.50×0.50 grid for monthly precip-itation data from 1961 to 2022,Provided by the Climatic Research Unit.The study aimed to analyze climatic changes affected the first and last five years of each decade,as well as the entire decade,during the specified period.GIS was used to meet the objectives of this study.Arizona experienced 51–568 mm,67–560 mm,63–622 mm,and 52–590 mm of rainfall in the sixth,seventh,eighth,and ninth decades of the second millennium,respectively.Both the first and second five year periods of each decade showed accept-able rainfall amounts despite fluctuations.However,rainfall decreased in the first and second decades of the third millennium.and in the first two years of the third decade.Rainfall amounts dropped to 42–472 mm,55–469 mm,and 74–498 mm,respectively,indicating a downward trend in precipitation.The central part of the state received the highest rainfall,while the eastern and western regions(spanning north to south)had significantly less.Over the decades of the third millennium,the average annual rainfall every five years was relatively low,showing a declining trend due to severe climate changes,generally ranging between 35 mm and 498 mm.The central regions consistently received more rainfall than the eastern and western outskirts.Arizona is currently experiencing a decrease in rainfall due to climate change,a situation that could deterio-rate further.This highlights the need to optimize the use of existing rainfall and explore alternative water sources.
文摘Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.
文摘The aim of this article is to explore potential directions for the development of artificial intelligence(AI).It points out that,while current AI can handle the statistical properties of complex systems,it has difficulty effectively processing and fully representing their spatiotemporal complexity patterns.The article also discusses a potential path of AI development in the engineering domain.Based on the existing understanding of the principles of multilevel com-plexity,this article suggests that consistency among the logical structures of datasets,AI models,model-building software,and hardware will be an important AI development direction and is worthy of careful consideration.
基金supported by the National Key R&D Program of China(2022YFD1401600)the National Science Foundation for Distinguished Young Scholars of Zhejang Province,China(LR23C140001)supported by the Key Area Research and Development Program of Guangdong Province,China(2018B020205003 and 2020B0202090001).
文摘Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.
基金supported by a project entitled Loess Plateau Region-Watershed-Slope Geological Hazard Multi-Scale Collaborative Intelligent Early Warning System of the National Key R&D Program of China(2022YFC3003404)a project of the Shaanxi Youth Science and Technology Star(2021KJXX-87)public welfare geological survey projects of Shaanxi Institute of Geologic Survey(20180301,201918,202103,and 202413).
文摘This study investigated the impacts of random negative training datasets(NTDs)on the uncertainty of machine learning models for geologic hazard susceptibility assessment of the Loess Plateau,northern Shaanxi Province,China.Based on randomly generated 40 NTDs,the study developed models for the geologic hazard susceptibility assessment using the random forest algorithm and evaluated their performances using the area under the receiver operating characteristic curve(AUC).Specifically,the means and standard deviations of the AUC values from all models were then utilized to assess the overall spatial correlation between the conditioning factors and the susceptibility assessment,as well as the uncertainty introduced by the NTDs.A risk and return methodology was thus employed to quantify and mitigate the uncertainty,with log odds ratios used to characterize the susceptibility assessment levels.The risk and return values were calculated based on the standard deviations and means of the log odds ratios of various locations.After the mean log odds ratios were converted into probability values,the final susceptibility map was plotted,which accounts for the uncertainty induced by random NTDs.The results indicate that the AUC values of the models ranged from 0.810 to 0.963,with an average of 0.852 and a standard deviation of 0.035,indicating encouraging prediction effects and certain uncertainty.The risk and return analysis reveals that low-risk and high-return areas suggest lower standard deviations and higher means across multiple model-derived assessments.Overall,this study introduces a new framework for quantifying the uncertainty of multiple training and evaluation models,aimed at improving their robustness and reliability.Additionally,by identifying low-risk and high-return areas,resource allocation for geologic hazard prevention and control can be optimized,thus ensuring that limited resources are directed toward the most effective prevention and control measures.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金the financial support of Shanghai Science and Technology innovation action plan(19DZ2203600).
文摘Lower Limb Exoskeletons(LLEs)are receiving increasing attention for supporting activities of daily living.In such active systems,an intelligent controller may be indispensable.In this paper,we proposed a locomotion intention recognition system based on time series data sets derived from human motion signals.Composed of input data and Deep Learning(DL)algorithms,this framework enables the detection and prediction of users’movement patterns.This makes it possible to predict the detection of locomotion modes,allowing the LLEs to provide smooth and seamless assistance.The pre-processed eight subjects were used as input to classify four scenes:Standing/Walking on Level Ground(S/WOLG),Up the Stairs(US),Down the Stairs(DS),and Walking on Grass(WOG).The result showed that the ResNet performed optimally compared to four algorithms(CNN,CNN-LSTM,ResNet,and ResNet-Att)with an approximate evaluation indicator of 100%.It is expected that the proposed locomotion intention system will significantly improve the safety and the effectiveness of LLE due to its high accuracy and predictive performance.
基金National Natural Science Foundation of China(No.61971036)Fundamental Research Funds for the Central Universities(No.2023CX01011)Beijing Nova Program(No.20230484361)。
文摘This paper proposed a method to generate semi-experimental biomedical datasets based on full-wave simulation software.The system noise such as antenna port couplings is fully considered in the proposed datasets,which is more realistic than synthetical datasets.In this paper,datasets containing different shapes are constructed based on the relative permittivities of human tissues.Then,a back-propagation scheme is used to obtain the rough reconstructions,which will be fed into a U-net convolutional neural network(CNN)to recover the high-resolution images.Numerical results show that the network trained on the datasets generated by the proposed method can obtain satisfying reconstruction results and is promising to be applied in real-time biomedical imaging.
文摘This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.
基金National Key Research and Development Program of China(No.2023YFB3907103).
文摘Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%.