期刊文献+
共找到11,620篇文章
< 1 2 250 >
每页显示 20 50 100
3D Geological Modeling with Multi-source Data Integration in Polymetallic Region:A Case Study of Luanchuan,Henan Province,China 被引量:1
1
作者 Gongwen Wang~(1,2),Shouting Zhang~(1,2),Changhai Yan~3,Yaowu Song~3,Limei Wang~1 1.School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China. 2.State Key laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China 3.Henan Institute of Geological Survey,Zhengzhou 450007,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期166-167,共2页
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan... The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China. 展开更多
关键词 3D GEOLOGICAL modeling multi-source data MINERAL exploration METALLOGENIC model virtual GEOLOGICAL section Luanchuan POLYMETALLIC REGION
在线阅读 下载PDF
Multi-source data integration and multi-scale modeling framework for progressive prediction of complex geological interfaces in tunneling 被引量:5
2
作者 Jingxiao Wang Peinan Li +3 位作者 Xiaoying Zhuang Xiaojun Li Xi Jiang Jun Wu 《Underground Space》 SCIE EI CSCD 2024年第2期1-25,共25页
A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but ... A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but not detailed internal geological characteristics,especially at tunnel portals with complex geological conditions.This paper presents a comprehensive methodological framework for refined modeling of the tunnel surrounding rock and subsequent mechanics analysis,with a particular focus on natural space distortion of hard-soft rock interfaces at tunnel portals.The progressive prediction of geological structures is developed considering multi-source data derived from the tunnel survey and excavation stages.To improve the accuracy of the models,a novel modeling method is proposed to integrate multi-source and multi-scale data based on data extraction and potential field interpolation.Finally,a regional-scale model and an engineering-scale model are built,providing a clear insight into geological phenomena and supporting numerical calculation.In addition,the proposed framework is applied to a case study,the Long-tou mountain tunnel project in Guangzhou,China,where the dominant rock type is granite.The results show that the data integration and modeling methods effectively improve model structure refinement.The improved model’s calculation deviation is reduced by about 10%to 20%in the mechanical analysis.This study contributes to revealing the complex geological environment with singular interfaces and promoting the safety and performance of mountain tunneling. 展开更多
关键词 Mountain tunnel Geological modeling multi-source data Progressive prediction Tunnel portals
在线阅读 下载PDF
Enhanced permeability prediction in porous media using particle swarm optimization with multi-source integration
3
作者 Zhiping Chen Jia Zhang +2 位作者 Daren Zhang Xiaolin Chang Wei Zhou 《Artificial Intelligence in Geosciences》 2024年第1期282-293,共12页
Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of indivi... Accurately and efficiently predicting the permeability of porous media is essential for addressing a wide range of hydrogeological issues.However,the complexity of porous media often limits the effectiveness of individual prediction methods.This study introduces a novel Particle Swarm Optimization-based Permeability Integrated Prediction model(PSO-PIP),which incorporates a particle swarm optimization algorithm enhanced with dy-namic clustering and adaptive parameter tuning(KGPSO).The model integrates multi-source data from the Lattice Boltzmann Method(LBM),Pore Network Modeling(PNM),and Finite Difference Method(FDM).By assigning optimal weight coefficients to the outputs of these methods,the model minimizes deviations from actual values and enhances permeability prediction performance.Initially,the computational performances of the LBM,PNM,and FDM are comparatively analyzed on datasets consisting of sphere packings and real rock samples.It is observed that these methods exhibit computational biases in certain permeability ranges.The PSOPIP model is proposed to combine the strengths of each computational approach and mitigate their limitations.The PSO-PIP model consistently produces predictions that are highly congruent with actual permeability values across all prediction intervals,significantly enhancing prediction accuracy.The outcomes of this study provide a new tool and perspective for the comprehensive,rapid,and accurate prediction of permeability in porous media. 展开更多
关键词 Porous media Particle swarm optimization algorithm multi-source data integration Permeability prediction
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
4
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
5
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things 被引量:1
6
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 Power Internet of Things Object model High concurrency access Zero trust mechanism multi-source heterogeneous data
在线阅读 下载PDF
Uncertain process-based data integration and residual lifetime evaluation of PCB in airborne equipment with ADT and field data 被引量:1
7
作者 Yu WANG Rui KANG +4 位作者 Linhan GUO Xiaoyang LI Zhe LIU Xiaohui WANG Weifang ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期233-245,共13页
Accurately evaluating the lifespan of the Printed Circuit Board(PCB)in airborne equipment is an essential issue for aircraft design and operation in the marine atmospheric environment.This paper presents a novel evalu... Accurately evaluating the lifespan of the Printed Circuit Board(PCB)in airborne equipment is an essential issue for aircraft design and operation in the marine atmospheric environment.This paper presents a novel evaluation method by fusing Accelerated Degradation Testing(ADT)data,degradation data,and life data of small samples based on the uncertainty degradation process.An uncertain life model of PCB in airborne equipment is constructed by employing the uncertain distribution that considers the accelerated factor of multiple environmental conditions such as temperature,humidity,and salinity.In addition,a degradation process model of PCB in airborne equipment is constructed by employing the uncertain process of fusing ADT data and field data,in which the performance characteristics of dynamic cumulative change are included.Based on minimizing the pth sample moments,an integrated method for parameter estimation of the PCB in airborne equipment is proposed by fusing the multi-source data of life,degradation,and ADT.An engineering case illustrates the effectiveness and advantage of the proposed method. 展开更多
关键词 Printed circuit board DEGRADATION data integration Field environment Accelerated degradation testing Parameter estimate
原文传递
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
8
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 Functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
IDCE:Integrated Data Compression and Encryption for Enhanced Security and Efficiency
9
作者 Muhammad Usama Arshad Aziz +2 位作者 Suliman A.Alsuhibany Imtiaz Hassan Farrukh Yuldashev 《Computer Modeling in Engineering & Sciences》 2025年第4期1029-1048,共20页
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da... Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field. 展开更多
关键词 Chaotic maps SECURITY data compression data encryption integrated compression and encryption
在线阅读 下载PDF
Expeditionplus:The application of a gridded system in the integration of multidimensional environmental factors
10
作者 Xinyuan Kuai Quansheng Fu +1 位作者 Hang Sun Tao Deng 《Plant Diversity》 2025年第4期702-708,共7页
The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distributio... The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region. 展开更多
关键词 Gridded system data integration Multidimensional environmental factors Western China GIS Plant distribution
在线阅读 下载PDF
Homomorphic Integrity and Confidentiality Protection for Data Aggregation in the Digital Twin Environment with High Efficiency
11
作者 Yan Xincheng Wan Changsheng +3 位作者 Bao Zhenjie Li Pei Hou Kangxin Chen Haitao 《China Communications》 2025年第10期101-117,共17页
Digital twin is a novel technology that has achieved significant progress in industrial manufactur-ing systems in recent years.In the digital twin envi-ronment,entities in the virtual space collect data from devices i... Digital twin is a novel technology that has achieved significant progress in industrial manufactur-ing systems in recent years.In the digital twin envi-ronment,entities in the virtual space collect data from devices in the physical space to analyze their states.However,since a lot of devices exist in the physical space,the digital twin system needs to aggregate data from multiple devices at the edge gateway.Homomor-phic integrity and confidentiality protections are two important requirements for this data aggregation pro-cess.Unfortunately,existing homomorphic encryp-tion algorithms do not support integrity protection,and existing homomorphic signing algorithms require all signers to use the same signing key,which is not feasible in the digital twin environment.Moreover,for both integrity and confidentiality protections,the homomorphic signing algorithm must be compatible with the aggregation manner of the homomorphic en-cryption algorithm.To address these issues,this paper designs a novel homomorphic aggregation scheme,which allows multiple devices in the physical space to sign different data using different keys and support in-tegrity and confidentiality protections.Finally,the security of the newly designed scheme is analyzed,and its efficiency is evaluated.Experimental results show that our scheme is feasible for real world applications. 展开更多
关键词 data aggregation digital twin homomorphic encryption homomorphic integrity protection
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
12
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 integrated learning algorithm data intervals clustering Feature selection Application of artificial intelligence in distillation industry data-driven modelling
在线阅读 下载PDF
Integral experiment on slab^(nat)Pb using D-T and D-D neutron sources to validate evaluated nuclear data
13
作者 Kuo-Zhi Xu Yang-Bo Nie +6 位作者 Chang-Lin Lan Yan-Yan Ding Shi-Yu Zhang Qi Zhao Xin-Yi Pan Jie Ren Xi-Chao Ruan 《Nuclear Science and Techniques》 2025年第3期119-133,共15页
Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,... Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,the measurement and evaluation of Pb nuclear data are highly regarded in nuclear scientific research,emphasizing its crucial role in the field.Using the time-of-flight(ToF)method,the neutron leakage spectra from three^(nat)Pb samples were measured at 60°and 120°based on the neutronics integral experimental facility at the China Institute of Atomic Energy(CIAE).The^(nat)Pb sample sizes were30 cm×30 cm×5 cm,30 cm×30 cm×10 cm,and 30 cm×30 cm×15 cm.Neutron sources were generated by the Cockcroft-Walton accelerator,producing approximately 14.5 MeV and 3.5 MeV neutrons through the T(d,n)^(4)He and D(d,n)^(3)He reactions,respectively.Leakage neutron spectra were also calculated by employing the Monte Carlo code of MCNP-4C,and the nuclear data of Pb isotopes from four libraries:CENDL-3.2,JEFF-3.3,JENDL-5,and ENDF/B-Ⅷ.0 were used individually.By comparing the simulation and experimental results,improvements and deficiencies in the evaluated nuclear data of the Pb isotopes were analyzed.Most of the calculated results were consistent with the experimental results;however,a few areas did not fit well.In the(n,el)energy range,the simulated results from CENDL-3.2 were significantly overestimated;in the(n,inl)D and the(n,inl)C energy regions,the results from CENDL-3.2 and ENDF/B-Ⅷ.0 were significantly overestimated at 120°,and the results from JENDL-5 and JEFF-3.3 are underestimated at 60°in the(n,inl)D energy region.The calculated spectra were analyzed by comparing them with the experimental spectra in terms of the neutron spectrum shape and C/E values.The results indicate that the theoretical simulations,using different data libraries,overestimated or underestimated the measured values in certain energy ranges.Secondary neutron energies and angular distributions in the data files have been presented to explain these discrepancies. 展开更多
关键词 integral experiment Neutron leakage spectra ^(nat)Pb D-T and D-D neutron sources Evaluated nuclear data
在线阅读 下载PDF
Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
14
作者 Shanni Cao Xue Zhao +6 位作者 Zhuojin Li Ranran Yu Yuqi Li Xinkai Zhou Wenhao Yan Dijun Chen Chao He 《Plant Diversity》 SCIE CAS CSCD 2024年第3期372-385,共14页
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we... Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types. 展开更多
关键词 ARABIDOPSIS Single cell transcriptome Gene regulatory network data integration Plant cell atlas
在线阅读 下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
15
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
在线阅读 下载PDF
Integrating Multi-Source Web Records into Relational Database 被引量:1
16
作者 HUANG Jianbin JI Hongbing SUN Heli 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1177-1181,共5页
How to integrate heterogeneous semi-structured Web records into relational database is an important and challengeable research topic. An improved model of conditional random fields was presented to combine the learnin... How to integrate heterogeneous semi-structured Web records into relational database is an important and challengeable research topic. An improved model of conditional random fields was presented to combine the learning of labeled samples and unlabeled database records in order to reduce the dependence on tediously hand-labeled training data. The pro- posed model was used to solve the problem of schema matching between data source schema and database schema. Experimental results using a large number of Web pages from diverse domains show the novel approach's effectiveness. 展开更多
关键词 Web data integration schema matching conditional random fields
在线阅读 下载PDF
Semantic-based query processing for relational data integration 被引量:1
17
作者 苗壮 张亚非 +2 位作者 王进鹏 陆建江 周波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期22-25,共4页
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al... To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance. 展开更多
关键词 data integration relational database simple protocol and RDF query language(SPARQL) minimal connectable unit query processing
在线阅读 下载PDF
Separation method for multi-source blended seismic data
18
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
在线阅读 下载PDF
Performance Analysis and Optimization of Energy Harvesting Modulation for Multi-User Integrated Data and Energy Transfer 被引量:1
19
作者 Yizhe Zhao Yanliang Wu +1 位作者 Jie Hu Kun Yang 《China Communications》 SCIE CSCD 2024年第1期148-162,共15页
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ... Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance. 展开更多
关键词 energy harvesting modulation(EHM) integrated data and energy transfer(IDET) performance analysis wireless data transfer(WDT) wireless energy transfer(WET)
在线阅读 下载PDF
Overview of global monthly surface temperature data in the past century and preliminary integration 被引量:2
20
作者 XU Wen-Hui LI Qing-Xiang +1 位作者 YANG Su XU Yan 《Advances in Climate Change Research》 SCIE 2014年第3期111-117,共7页
This paper analyzes the status of existing resources through extensive research and international cooperation on the basis of four typical global monthly surface temperature datasets including the climate research dat... This paper analyzes the status of existing resources through extensive research and international cooperation on the basis of four typical global monthly surface temperature datasets including the climate research dataset of the University of East Anglia(CRUTEM3), the dataset of the U.S. National Climatic Data Center(GHCN-V3), the dataset of the U.S. National Aeronautics and Space Administration(GISSTMP), and the Berkeley Earth surface temperature dataset(Berkeley). China's first global monthly temperature dataset over land was developed by integrating the four aforementioned global temperature datasets and several regional datasets from major countries or regions. This dataset contains information from 9,519 stations worldwide of at least 20 years for monthly mean temperature, 7,073 for maximum temperature, and 6,587 for minimum temperature. Compared with CRUTEM3 and GHCN-V3, the station density is much higher particularly for South America, Africa,and Asia. Moreover, data from significantly more stations were available after the year 1990 which dramatically reduced the uncertainty of the estimated global temperature trend during 1990e2011. The integrated dataset can serve as a reliable data source for global climate change research. 展开更多
关键词 GLOBAL MONTHLY SURFACE temperature dataset integration of multi-source data Climate change
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部