Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time...Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation.展开更多
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol...During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assi...In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assisted assembly(MAA) and force-driven assembly. In MAA,relative pose between components is directly measured to guide assembly, while in force-driven assembly, only contact state can be recognized according to measured six-dimensional force and torque(6 D F/T) and the process is completed based on preset assembly strategy. Aiming to improve the efficiency of force-driven cabin-type component alignment, this paper proposed a heuristic alignment method based on multi-source data fusion. In this method, measured 6 D F/T, pose data and geometric information of components are fused to calculate the relative pose between components and guide the movement of pose adjustment platform. Among these data types, pose data and measured 6 D F/T are combined as data set. To collect the data sets needed for data fusion, dynamic gravity compensation method and hybrid motion control method are designed. Then the relative pose calculation method is elaborated, which transforms collected data sets into discrete geometric elements and calculates the relative poses based on the geometric information of components.Finally, experiments are conducted in simulation environment and the results show that the proposed alignment method is feasible and effective.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally inte...Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally intensive phys-ics-based models or data-driven methods that neglect hydrodynamic con-straints and suffer from label noise in mandatory reporting data.We propose a physics-informed LightGBM framework that fuses high-resolution AIS tra-jectories,meteorological re-analyses and EU MRV logs through a temporally anchored,multi-source alignment protocol.A dual LightGBM ensemble(L1/L2)predicts RPM under laden and ballast conditions.Validation on a Panamax tanker(366 days)yields−1.52 rpm(−3%)error;ballast accuracy surpasses laden by 1.7%.展开更多
Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testab...Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.展开更多
This Paper presents a data fusion method with distributed sequence detection for on hypothasis testingtheory including the data fusion algorithm of sequence detection based on least error probability rule, the decisio...This Paper presents a data fusion method with distributed sequence detection for on hypothasis testingtheory including the data fusion algorithm of sequence detection based on least error probability rule, the decision ruleand the calcation formula of the detction times and the simulation result of system performance as well.展开更多
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ...Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity o...Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation.展开更多
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金supported by grants from the National Key Research and Development Program of China(2022YFD2001103)the National Natural Science Foundation of China(42371373)。
文摘Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation.
基金Supported by the National Natural Science Foundation of China(U24B2031)National Key Research and Development Project(2018YFA0702504)"14th Five-Year Plan"Science and Technology Project of CNOOC(KJGG2022-0201)。
文摘During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
基金co-supported by the Special Research on Civil Aircraft of China (No.MJZ-2017-J-96)the Defense Industrial Technology Development Program of China (No.JCKY2016206B009)。
文摘In cabin-type component alignment, digital measurement technology is usually adopted to provide guidance for assembly. Depending on the system of measurement, the alignment process can be divided into measurement-assisted assembly(MAA) and force-driven assembly. In MAA,relative pose between components is directly measured to guide assembly, while in force-driven assembly, only contact state can be recognized according to measured six-dimensional force and torque(6 D F/T) and the process is completed based on preset assembly strategy. Aiming to improve the efficiency of force-driven cabin-type component alignment, this paper proposed a heuristic alignment method based on multi-source data fusion. In this method, measured 6 D F/T, pose data and geometric information of components are fused to calculate the relative pose between components and guide the movement of pose adjustment platform. Among these data types, pose data and measured 6 D F/T are combined as data set. To collect the data sets needed for data fusion, dynamic gravity compensation method and hybrid motion control method are designed. Then the relative pose calculation method is elaborated, which transforms collected data sets into discrete geometric elements and calculates the relative poses based on the geometric information of components.Finally, experiments are conducted in simulation environment and the results show that the proposed alignment method is feasible and effective.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金support from the“Ocean-going Vessel Meteorological Navigation System”project funded under the Key Core Technology Breakthrough Program for Transportation Equipment(GJ-2025-01)COSCO Shipping Group’s Third Batch of Scientific Research Projects from the 14th Five-Year Plan.
文摘Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally intensive phys-ics-based models or data-driven methods that neglect hydrodynamic con-straints and suffer from label noise in mandatory reporting data.We propose a physics-informed LightGBM framework that fuses high-resolution AIS tra-jectories,meteorological re-analyses and EU MRV logs through a temporally anchored,multi-source alignment protocol.A dual LightGBM ensemble(L1/L2)predicts RPM under laden and ballast conditions.Validation on a Panamax tanker(366 days)yields−1.52 rpm(−3%)error;ballast accuracy surpasses laden by 1.7%.
基金supported by National Natural Science Foundation of China (No.51105369)
文摘Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.
文摘This Paper presents a data fusion method with distributed sequence detection for on hypothasis testingtheory including the data fusion algorithm of sequence detection based on least error probability rule, the decision ruleand the calcation formula of the detction times and the simulation result of system performance as well.
基金Meteorological Research in the Public Interest,No.GYHY201106014Beijing Nova Program,No.2010B037China Special Fund for the National High Technology Research and Development Program of China(863 Program),No.412230
文摘Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金supported by the National Natural Science Foundation of China[Grant numbers U20A2091,41930107]。
文摘Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation.