期刊文献+
共找到39,857篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Source Heterogeneous Data Fusion Analysis Platform for Thermal Power Plants
1
作者 Jianqiu Wang Jianting Wen +1 位作者 Hui Gao Chenchen Kang 《Journal of Architectural Research and Development》 2025年第6期24-28,共5页
With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heter... With the acceleration of intelligent transformation of energy system,the monitoring of equipment operation status and optimization of production process in thermal power plants face the challenge of multi-source heterogeneous data integration.In view of the heterogeneous characteristics of physical sensor data,including temperature,vibration and pressure that generated by boilers,steam turbines and other key equipment and real-time working condition data of SCADA system,this paper proposes a multi-source heterogeneous data fusion and analysis platform for thermal power plants based on edge computing and deep learning.By constructing a multi-level fusion architecture,the platform adopts dynamic weight allocation strategy and 5D digital twin model to realize the collaborative analysis of physical sensor data,simulation calculation results and expert knowledge.The data fusion module combines Kalman filter,wavelet transform and Bayesian estimation method to solve the problem of data time series alignment and dimension difference.Simulation results show that the data fusion accuracy can be improved to more than 98%,and the calculation delay can be controlled within 500 ms.The data analysis module integrates Dymola simulation model and AERMOD pollutant diffusion model,supports the cascade analysis of boiler combustion efficiency prediction and flue gas emission monitoring,system response time is less than 2 seconds,and data consistency verification accuracy reaches 99.5%. 展开更多
关键词 Thermal power plant multi-source heterogeneous data data fusion analysis platform Edge computing
在线阅读 下载PDF
Effect of human settlements on urban thermal environment and factor analysis based on multi-source data:A case study of Changsha city 被引量:5
2
作者 XIONG Ying ZHANG Fang 《Journal of Geographical Sciences》 SCIE CSCD 2021年第6期819-838,共20页
In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved b... In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements. 展开更多
关键词 thermal environment natural-human factor multi-source data spatial PCA Changsha city
原文传递
Risk Analysis Using Multi-Source Data for Distribution Networks Facing Extreme Natural Disasters
3
作者 Jun Yang Nannan Wang +1 位作者 Jiang Wang Yashuai Luo 《Energy Engineering》 EI 2023年第9期2079-2096,共18页
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera... Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters. 展开更多
关键词 Distribution network disaster damage analysis fault judgment multi-source data
在线阅读 下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
4
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 Landslide runout prediction Drone survey multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
5
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Gene Expression Data Analysis Based on Mixed Effects Model
6
作者 Yuanbo Dai 《Journal of Computer and Communications》 2025年第2期223-235,共13页
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres... DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions. 展开更多
关键词 Mixed Effects Model Gene Expression data analysis Gene analysis Gene Chip
暂未订购
Monitoring track irregularities using multi-source on-board measurement data
7
作者 Qinglin Xie Fei Peng +4 位作者 Gongquan Tao Yu Ren Fangbo Liu Jizhong Yang Zefeng Wen 《Railway Engineering Science》 2025年第4期746-765,共20页
Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on co... Accurate monitoring of track irregularities is very helpful to improving the vehicle operation quality and to formulating appropriate track maintenance strategies.Existing methods have the problem that they rely on complex signal processing algorithms and lack multi-source data analysis.Driven by multi-source measurement data,including the axle box,the bogie frame and the carbody accelerations,this paper proposes a track irregularities monitoring network(TIMNet)based on deep learning methods.TIMNet uses the feature extraction capability of convolutional neural networks and the sequence map-ping capability of the long short-term memory model to explore the mapping relationship between vehicle accelerations and track irregularities.The particle swarm optimization algorithm is used to optimize the network parameters,so that both the vertical and lateral track irregularities can be accurately identified in the time and spatial domains.The effectiveness and superiority of the proposed TIMNet is analyzed under different simulation conditions using a vehicle dynamics model.Field tests are conducted to prove the availability of the proposed TIMNet in quantitatively monitoring vertical and lateral track irregularities.Furthermore,comparative tests show that the TIMNet has a better fitting degree and timeliness in monitoring track irregularities(vertical R2 of 0.91,lateral R2 of 0.84 and time cost of 10 ms),compared to other classical regression.The test also proves that the TIMNet has a better anti-interference ability than other regression models. 展开更多
关键词 Track irregularities Vehicle accelerations On-board monitoring multi-source data Deep learning
在线阅读 下载PDF
Research on the Development Strategies of Realtime Data Analysis and Decision-support Systems
8
作者 Wei Tang 《Journal of Electronic Research and Application》 2025年第2期204-210,共7页
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This... With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques. 展开更多
关键词 Real-time data analysis Decision-support system Big data System architecture data processing Visualization technology
在线阅读 下载PDF
Utilizing Multi-source Data Fusion to Identify the Layout Patterns of the Catering Industry and Urban Spatial Structure in Shanghai,China
9
作者 TIAN Chuang LUAN Weixin 《Chinese Geographical Science》 2025年第5期1045-1058,共14页
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron... Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions. 展开更多
关键词 multi-source data fusion urban spatial structure MULTI-CENTER catering industry Shanghai China
在线阅读 下载PDF
Evaluating Urban Housing Contradictions Through Multisource Data Fusion:a Case Study of Spatiotemporal Mismatch Analysis in Shenzhen with the HCEWI Model
10
作者 JIANG Aiyi CHEN Guanzhou CAO Jinzhou 《Journal of Geodesy and Geoinformation Science》 2025年第3期1-16,共16页
The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap ... The rapid urbanization and structural imbalances in Chinese megacities have exacerbated the housing supplydemand mismatch,creating an urgent need for fine-scale diagnostic tools.This study addresses this critical gap by developing the Housing Contradiction Evaluation Weighted Index(HCEWI)model,making three key contributions to high-resolution housing monitoring.First,we establish a tripartite theoretical framework integrating dynamic population pressure(PPI),housing supply potential(HSI),and functional diversity(HHI).The PPI innovatively combines mobile signaling data with principal component analysis to capture real-time commuting patterns,while the HSI introduces a novel dual-criteria system based on Local Climate Zones(LCZ),weighted by building density and residential function ratio.Second,we develop a spatiotemporal coupling architecture featuring an entropy-weighted dynamic integration mechanism with self-correcting modules,demonstrating robust performance against data noise.Third,our 25-month longitudinal analysis in Shenzhen reveals significant findings,including persistent bipolar clustering patterns,contrasting volatility between peripheral and core areas,and seasonal policy responsiveness.Methodologically,we advance urban diagnostics through 500-meter grid monthly monitoring and process-oriented temporal operators that reveal“tentacle-like”spatial restructuring along transit corridors.Our findings provide a replicable framework for precision housing governance and demonstrate the transformative potential of mobile signaling data in implementing China’s“city-specific policy”approach.We further propose targeted intervention strategies,including balance regulation for high-contradiction zones,Transit-Oriented Development(TOD)activation for low-contradiction clusters,and dynamic land conversion mechanisms for transitional areas. 展开更多
关键词 index terms-housing contradiction assessment multi-source data fusion spatiotemporal heterogeneity job-housing spatial mismatch high-resolution urban diagnostics
在线阅读 下载PDF
Analysis of the Impact of Legal Digital Currencies on Bank Big Data Practices
11
作者 Zhengkun Xiu 《Journal of Electronic Research and Application》 2025年第1期23-27,共5页
This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can e... This paper analyzes the advantages of legal digital currencies and explores their impact on bank big data practices.By combining bank big data collection and processing,it clarifies that legal digital currencies can enhance the efficiency of bank data processing,enrich data types,and strengthen data analysis and application capabilities.In response to future development needs,it is necessary to strengthen data collection management,enhance data processing capabilities,innovate big data application models,and provide references for bank big data practices,promoting the transformation and upgrading of the banking industry in the context of legal digital currencies. 展开更多
关键词 Legal digital currency Bank big data data processing efficiency data analysis and application Countermeasures and suggestions
在线阅读 下载PDF
Extraction of effective response for controlled-source electromagnetic data based on clustering analysis
12
作者 Cong Zhou Zhan-zi Qin +2 位作者 Liang Yang Tara P.Banjade Xiao-fei Zhou 《Applied Geophysics》 2025年第4期1297-1312,1499,共17页
The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic respo... The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method. 展开更多
关键词 controlled-source electromagnetic method data processing Cluster analysis Noise
在线阅读 下载PDF
Evaluating fracture volume loss during production process by comparative analysis of initial and second flowback data
13
作者 Chong Cao Tamer Moussa Hassan Dehghanpour 《International Journal of Coal Science & Technology》 2025年第3期274-290,共17页
The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pr... The fracture volume is gradually changed with the depletion of fracture pressure during the production process.However,there are few flowback models available so far that can estimate the fracture volume loss using pressure transient and rate transient data.The initial flowback involves producing back the fracturing fuid after hydraulic fracturing,while the second flowback involves producing back the preloading fluid injected into the parent wells before fracturing of child wells.The main objective of this research is to compare the initial and second flowback data to capture the changes in fracture volume after production and preload processes.Such a comparison is useful for evaluating well performance and optimizing frac-turing operations.We construct rate-normalized pressure(RNP)versus material balance time(MBT)diagnostic plots using both initial and second flowback data(FB;and FBs,respectively)of six multi-fractured horizontal wells completed in Niobrara and Codell formations in DJ Basin.In general,the slope of RNP plot during the FB,period is higher than that during the FB;period,indicating a potential loss of fracture volume from the FB;to the FB,period.We estimate the changes in effective fracture volume(Ver)by analyzing the changes in the RNP slope and total compressibility between these two flowback periods.Ver during FB,is in general 3%-45%lower than that during FB:.We also compare the drive mechanisms for the two flowback periods by calculating the compaction-drive index(CDI),hydrocarbon-drive index(HDI),and water-drive index(WDI).The dominant drive mechanism during both flowback periods is CDI,but its contribution is reduced by 16%in the FB,period.This drop is generally compensated by a relatively higher HDI during this period.The loss of effective fracture volume might be attributed to the pressure depletion in fractures,which occurs during the production period and can extend 800 days. 展开更多
关键词 Second flowback data analysis Infill development Preloading effect Effective fracture volume loss Flowback rate-transient analysis
在线阅读 下载PDF
Application of Big Data Technology in User Behavior Analysis of E-commerce Platforms
14
作者 Yanzhao Jia 《Journal of Electronic Research and Application》 2025年第3期104-110,共7页
With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis o... With the rapid development of the Internet and e-commerce,e-commerce platforms have accumulated huge amounts of user behavior data.The emergence of big data technology provides a powerful means for in-depth analysis of these data and insight into user behavior patterns and preferences.This paper elaborates on the application of big data technology in the analysis of user behavior on e-commerce platforms,including the technical methods of data collection,storage,processing and analysis,as well as the specific applications in the construction of user profiles,precision marketing,personalized recommendation,user retention and churn analysis,etc.,and discusses the challenges and countermeasures faced in the application.Through the study of actual cases,it demonstrates the remarkable effectiveness of big data technology in enhancing the competitiveness of e-commerce platforms and user experience. 展开更多
关键词 Big data technology E-commerce platform User behavior analysis
在线阅读 下载PDF
Topology Data Analysis-Based Error Detection for Semantic Image Transmission with Incremental Knowledge-Based HARQ
15
作者 Ni Fei Li Rongpeng +1 位作者 Zhao Zhifeng Zhang Honggang 《China Communications》 2025年第1期235-255,共21页
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe... Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission. 展开更多
关键词 error detection incremental knowledgebased HARQ joint source-channel coding semantic communication swin transformer topological data analysis
在线阅读 下载PDF
Correction:Data analysis framework for silicon strip detector in compact spectrometer for heavy-ion experiments
16
作者 Xiao-Bao Wei Yu-Hao Qin +15 位作者 Sheng Xiao Da-Wei Si Dong Guo Zhi Qin Fen-Hai Guan Xin-Yue Diao Bo-Yuan Zhang Bai-Ting Tian Jun-Huai Xu Tian-Ren Zhuo Yi-Bo Hao Zeng-Xiang Wang Shi-Tao Wang Chun-Wang Ma Yi-Jie Wang Zhi-Gang Xiao 《Nuclear Science and Techniques》 2025年第11期367-367,共1页
In section‘Track decoding’of this article,one of the paragraphs was inadvertently missed out after the text'…shows the flow diagram of the Tr2-1121 track mode.'The missed paragraph is provided below.
关键词 tr track mode flow diagram data analysis heavy ion experiments silicon strip detector compact spectrometer track decoding
在线阅读 下载PDF
Single-Cell and Multi-Dimensional Data Analysis of the Key Role of IDH2 in Cervical Squamous Cell Carcinoma Progression
17
作者 Xiaojuan Liu Zhenpeng Zhu +5 位作者 Chenyang Hou Hui Ma Xiaoyan Li Chunxing Ma Lisha Shu Huiying Zhang 《Biomedical and Environmental Sciences》 2025年第6期773-778,共6页
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma... Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]). 展开更多
关键词 cervical squamous cell carcinoma IDH cervical cancera multi dimensional data analysis novel diagnostic therapeutic targets cervical cancer prognosis human papilloma virus hpv infectionearly
暂未订购
ADGAP:a user-friendly online ancient DNA database and genome analysis platform
18
作者 Yanwei Chen Yu Xu +1 位作者 Kongyang Zhu Chuan-Chao Wang 《Journal of Genetics and Genomics》 2025年第8期1058-1061,共4页
The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utilit... The analysis of ancient genomics provides opportunities to explore human population history across both temporal and geographic dimensions(Haak et al.,2015;Wang et al.,2021,2024)to enhance the accessibility and utility of these ancient genomic datasets,a range of databases and advanced statistical models have been developed,including the Allen Ancient DNA Resource(AADR)(Mallick et al.,2024)and AdmixTools(Patterson et al.,2012).While upstream processes such as sequencing and raw data processing have been streamlined by resources like the AADR,the downstream analysis of these datasets-encompassing population genetics inference and spatiotemporal interpretation-remains a significant challenge.The AADR provides a unified collection of published ancient DNA(aDNA)data,yet its file-based format and reliance on command-line tools,such as those in Admix-Tools(Patterson et al.,2012),require advanced computational expertise for effective exploration and analysis.These requirements can present significant challenges forresearchers lackingadvanced computational expertise,limiting the accessibility and broader application of these valuable genomic resources. 展开更多
关键词 dataBASE raw data processing analysis ancient genomics upstream processes ancient DNA explore human population history allen ancient dna resource aadr mallick ancient genomic datasetsa
原文传递
Seismic data analysis based on spatial subsets 被引量:2
19
作者 蔡希玲 刘学伟 +2 位作者 李虹 钱宇明 吕英梅 《Applied Geophysics》 SCIE CSCD 2009年第4期384-392,395,共10页
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ... There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information. 展开更多
关键词 spatial subset 3D visualization high density sampling noise attenuation data analysis
在线阅读 下载PDF
Separation method for multi-source blended seismic data
20
作者 王汉闯 陈生昌 +1 位作者 张博 佘德平 《Applied Geophysics》 SCIE CSCD 2013年第3期251-264,357,共15页
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble... Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods. 展开更多
关键词 multi-source data separation linear inverse problem sparsest constraint pseudo-deblending filtering
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部