Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditi...Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditional convolutional neural network(CNN)structure can only accept limited local context information.And most of the current methods only focus on the classification of benign and malignant brain tumors,multi classification of brain tumors is not common.In response to these shortcomings,considering that convolution kernels of different sizes can extract more comprehensive features,we put forward the multi-size convolutional kernel module.And considering that the combination of average-pooling with max-pooling can realize the complementary of the high-dimensional information extracted by the two structures,we proposed the dual-channel pooling layer.Combining the two structures with ResNet50,we proposed an improved ResNet50 CNN for the applications in multi-category brain tumor classification.We used data enhancement before training to avoid model over fitting and used five-fold cross-validation in experiments.Finally,the experimental results show that the network proposed in this paper can effectively classify healthy brain,meningioma,diffuse astrocytoma,anaplastic oligodendroglioma and glioblastoma.展开更多
文摘作为计算机视觉的基础任务,单幅图像超分辨率(Single Image Super-Resolution,SISR)长期以来一直是一个备受关注的研究课题。近期的研究表明,Transformer的成功不仅归功于其自注意力(Self-Attention,SA)机制,还体现在其宏观框架和先进组件的整体设计上。空间池化、位移、多层感知机(Multi-Layer Perception,MLP)、傅里叶变换和常数矩阵等方法,具有与SA机制相似的空间信息编码能力,能够替代并实现与其相当的效果。基于这一发现,本文的目标是利用Transformer中优越的宏观架构与高效的空间信息编码技术结合,改进复杂度较高的SA机制,以提升SISR性能。具体而言,本文重新审视了空间卷积的设计,旨在通过卷积调制技术实现更高效的空间特征编码,并通过动态调制方法表达特征。提出的高效空间信息编码(Efficient Spatial Information Encoding,ESIE)层,采用大核卷积和Hadamard积的方式,模仿查询与键之间的点积操作,并实现与SA机制中值表示再校准类似的效果。因此,ESIE层不仅能够捕捉长程依赖和自适应行为,还能够保持线性计算复杂度。另一方面,针对传统前馈网络(Feed-Forward Network,FFN)在处理空间信息时的次优表现,本文在提出的高效通道信息编码(Efficient Channel Information Encoding,ECIE)层中引入了空间感知和动态自适应机制。该方法有助于增强特征的多样性,并有效地调节层间的信息流动。实验结果表明,本文提出的高效空间-通道信息编码网络(Efficient Spatial-Channel Information Encoding,ESCIEN)在定量和定性评估上均优于现有模型。
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61873131)+5 种基金the Natural Science Foundation of Anhui(1908085MF207 and 1908085QE217)the Key Research Project of Anhui Natural Science(KJ2020A1215 and KJ2020A1216)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097)the Postdoctoral Foundation of Jiangsu(2018K009B)the Higher Education Quality Project of Anhui(2019sjjd81,2018mooc059,2018kfk009,2018sxzx38 and 2018FXJT02)the Fuyang Normal University Doctoral Startup Foundation(2017KYQD0008).
文摘Brain tumor is one of the most common tumors with high mortality.Early detection is of great significance for the treatment and rehabilitation of patients.The single channel convolution layer and pool layer of traditional convolutional neural network(CNN)structure can only accept limited local context information.And most of the current methods only focus on the classification of benign and malignant brain tumors,multi classification of brain tumors is not common.In response to these shortcomings,considering that convolution kernels of different sizes can extract more comprehensive features,we put forward the multi-size convolutional kernel module.And considering that the combination of average-pooling with max-pooling can realize the complementary of the high-dimensional information extracted by the two structures,we proposed the dual-channel pooling layer.Combining the two structures with ResNet50,we proposed an improved ResNet50 CNN for the applications in multi-category brain tumor classification.We used data enhancement before training to avoid model over fitting and used five-fold cross-validation in experiments.Finally,the experimental results show that the network proposed in this paper can effectively classify healthy brain,meningioma,diffuse astrocytoma,anaplastic oligodendroglioma and glioblastoma.