Interacting Multiple Model (IMM) estimator can provide better performance of target tracking than mono model Kalman filter. In multi-sensor system ordinarily, availability of measurement from different sensors is stoc...Interacting Multiple Model (IMM) estimator can provide better performance of target tracking than mono model Kalman filter. In multi-sensor system ordinarily, availability of measurement from different sensors is stochastic, and it is difficult to construct uniform global observation vector and observation matrix appropri-ately in existing method. An IMM estimator for uncertain measurement is presented. By the method invalid measurement is regarded as outlier, and approximation is reconstructed by feedback of system state estima-tion of fusion center. Then nominally generalized certain measurement can be obtained by substituting re-constructed one for invalid one. The generalized certain measurement can be centralized to construct global measurement and provided to IMM estimator, and existing multi-sensor IMM estimation method is general-ized to uncertain environment. Theoretical analysis and simulation results show the effectiveness of the method.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ...A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice fo...This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq...Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).展开更多
This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and ...This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.展开更多
Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded an...Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.展开更多
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ...In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.展开更多
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
文摘Interacting Multiple Model (IMM) estimator can provide better performance of target tracking than mono model Kalman filter. In multi-sensor system ordinarily, availability of measurement from different sensors is stochastic, and it is difficult to construct uniform global observation vector and observation matrix appropri-ately in existing method. An IMM estimator for uncertain measurement is presented. By the method invalid measurement is regarded as outlier, and approximation is reconstructed by feedback of system state estima-tion of fusion center. Then nominally generalized certain measurement can be obtained by substituting re-constructed one for invalid one. The generalized certain measurement can be centralized to construct global measurement and provided to IMM estimator, and existing multi-sensor IMM estimation method is general-ized to uncertain environment. Theoretical analysis and simulation results show the effectiveness of the method.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
基金Supported by the Science and Technology Key Project of Science and Technology Department of Henan Province(No.252102211041)the Key Research and Development Projects of Henan Province(No.231111212500).
文摘A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
文摘This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
基金supported by the National Natural Science Foundation of China(No.62202143)Key Research and Promotion Projects of Henan Province(Nos.232102240023,232102210063,222102210040).
文摘Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack).
基金This study was supported by the National Natural Science Foundation of China(No.62001506).
文摘This paper investigates the problem of Joint Radar Node Selection and Power Allocation(JRNSPA)in the Multiple Radar System(MRS)in the blanket jamming environment.Each radar node independently tracks moving target and subsequently transmits the raw observation data to the fusion center,which formulates a centralized tracking network structure.In order to establish a practical blanket jamming environment,we suppose that each target carries the self-defense jammer which automatically implements blanket jamming to the radar nodes that exceed the preset interception probability.Subsequently,the Predicted Conditional Cramer-Rao Lower Bound(PC-CRLB)is derived and utilized as the tracking accuracy criterion.Aimed at ensuring both the tracking performance and the Low Probability of Intercept(LPI)performance,the resource-saving scheduling model is formulated to minimize the transmit power consumption while meeting the requirements of tracking accuracy.Finally,the Modified Zoutendijk Method Of Feasible Directions(MZMFD)-based two-stage solution technique is adopted to solve the formulated non-convex optimization model.Simulation results show the effectiveness of the proposed JRNSPA scheme.
基金supported by the National Key R&D Plan"Intelligent Robots"Key Project of P.R.China(Grant No.2018YFB1308602)the National Natural Science Foundation of P.R.China(Grant No.61173184)+3 种基金the Chongqing Natural Science Foundation of P.R.China(Grant No.cstc2018jcyj AX0694)Research Project of Chongqing Big Data Application and Development Administration Bureau(No.22-30)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605)。
文摘Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets.
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
基金supported by the Science and Technology Innovation Program of Hunan Province(2021RC3078)。
文摘In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.