期刊文献+
共找到873篇文章
< 1 2 44 >
每页显示 20 50 100
Data Fusion in Distributed Multi-sensor System 被引量:7
1
作者 GUOHang YUMin 《Geo-Spatial Information Science》 2004年第3期214-217,234,共5页
This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a ... This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real\|time data. A pseudolite (PL) simulation example is given. 展开更多
关键词 PSEUDOLITE distributed multi-sensor system data fusion federated Kalman filtering
在线阅读 下载PDF
AMulti-Sensor and PCSV Asymptotic Classification Method for Additive Manufacturing High Precision and Efficient Fault Diagnosis
2
作者 Lingfeng Wang Dongbiao Li +2 位作者 Fei Xing Qiang Wang Jianjun Shi 《Structural Durability & Health Monitoring》 2025年第5期1183-1201,共19页
With the intelligent upgrading of manufacturing equipment,achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity.Online monitoring and fault diagno... With the intelligent upgrading of manufacturing equipment,achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity.Online monitoring and fault diagnosis technology play a critical role in improving the stability of metal additive manufacturing equipment.However,the limited proportion of fault data during operation challenges the accuracy and efficiency of multi-classification models due to excessive redundant data.A multi-sensor and principal component analysis(PCA)and support vector machine(SVM)asymptotic classification(PCSV)for additive manufacturing fault diagnosis method is proposed,and it divides the fault diagnosis into two steps.In the first step,real-time data are evaluated using the T2 and Q statistical parameters of the PCAmodel to identify potential faults while filtering non-fault data,thereby reducing redundancy and enhancing real-time efficiency.In the second step,the identified fault data are input into the SVM model for precise multi-class classification of fault categories.The PCSV method advances the field by significantly improving diagnostic accuracy and efficiency,achieving an accuracy of 99%,a diagnosis time of 0.65 s,and a training time of 503 s.The experimental results demonstrate the sophistication of the PCSV method for high-precision and high-efficiency fault diagnosis of small fault samples. 展开更多
关键词 Additive manufacturing fault diagnosis multi-sensor PCSV
在线阅读 下载PDF
Research on Vehicle Safety Based on Multi-Sensor Feature Fusion for Autonomous Driving Task
3
作者 Yang Su Xianrang Shi Tinglun Song 《Computers, Materials & Continua》 2025年第6期5831-5848,共18页
Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving.This study aims to enhan... Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving.This study aims to enhance the learning efficiency ofmulti-sensor feature fusion in autonomous driving tasks,thereby improving the safety and responsiveness of the system.To achieve this goal,we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities:visual,radar,and lidar data.The model optimizes the feature fusion process through the introduction of two novel mechanisms:Sparse Channel Pooling(SCP)and Residual Triplet-Attention(RTA).Firstly,the SCP mechanism enables the model to adaptively filter out salient feature channels while eliminating the interference of redundant features.This enhances the model’s emphasis on critical features essential for decisionmaking and strengthens its robustness to environmental variability.Secondly,the RTA mechanism addresses the issue of feature misalignment across different modalities by effectively aligning key cross-modal features.This alignment reduces the computational overhead associated with redundant features and enhances the overall efficiency of the system.Furthermore,this study incorporates a reinforcement learning module designed to optimize strategies within a continuous action space.By integrating thismodulewith the feature fusion learning process,the entire system is capable of learning efficient driving strategies in an end-to-end manner within the CARLA autonomous driving simulator.Experimental results demonstrate that the proposedmodel significantly enhances the perception and decision-making accuracy of the autonomous driving system in complex traffic scenarios while maintaining real-time responsiveness.This work provides a novel perspective and technical pathway for the application of multi-sensor data fusion in autonomous driving. 展开更多
关键词 multi-sensor fusion autonomous driving feature selection attention mechanism reinforcement learning
在线阅读 下载PDF
Optimal Energy Consumption Strategy of the Body Joint Quadruped Robot Based on CPG with Multi-sensor Fused Bio-reflection on Complex Terrain
4
作者 Qinglin Ai Guozheng Song +3 位作者 Hangsheng Tong Binghai Lv Jiaoliao Chen Jiyu Peng 《Journal of Bionic Engineering》 2025年第4期1731-1757,共27页
Quadruped robots with body joints exhibit enhanced mobility,however,in outdoor environments,the energy that the robot can carry is limited,necessitating optimization of energy consumption to accomplish more tasks with... Quadruped robots with body joints exhibit enhanced mobility,however,in outdoor environments,the energy that the robot can carry is limited,necessitating optimization of energy consumption to accomplish more tasks within these constraints.Inspired by quadruped animals,this paper proposes an energy-saving strategy for a body joint quadruped robot based on Central Pattern Generator(CPG)with multi-sensor fusion bio-reflexes.First,an energy consumption model for the robot is established,and energy characteristic tests are conducted under different gait parameters.Based on these energy characteristics,optimal energy-efficient gait parameters are determined for various environmental conditions.Second,biological reflex mechanisms are studied,and a motion control model based on multi-sensor fusion biological reflexes is established using CPG as the foundation.By integrating the reflex model and gait parameters,real-time adaptive adjustments to the robot’s motion gait are achieved on complex terrains,reducing energy loss caused by terrain disturbances.Finally,a prototype of the body joint quadruped robot is built for experimental verification.Simulation and experimental results demonstrate that the proposed algorithm effectively reduces the robot’s Cost of Transport(COT)and significantly improves energy efficiency.The related research results can provide a useful reference for the research on energy efficiency of quadruped robots on complex terrain. 展开更多
关键词 Body joint robot Energy consumption optimization multi-sensor fusion Bio-reflective mechanisms Cost of transport
在线阅读 下载PDF
Microseismic source location based on multi-sensor arrays and particle swarm optimization algorithm
5
作者 LIU Ling-hao SHANG Xue-yi +2 位作者 WANG Yi LI Xi-bing FENG Fan 《Journal of Central South University》 2025年第9期3297-3313,共17页
Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joint... Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios. 展开更多
关键词 microseismic monitoring source location particle swarm optimization multi-sensor arrays
在线阅读 下载PDF
多传感信息融合下的煤矿钻机状态远程在线监测研究
6
作者 王德伟 张灿明 《煤矿机械》 2026年第1期213-219,共7页
针对煤矿井下钻机状态监测中存在的多源传感器数据时空失配、噪声干扰强、故障特征微弱等问题,提出了一种基于多传感信息融合的远程在线监测系统。在硬件层面,设计以ATMEGA128L低功耗微处理器为核心的嵌入式采集节点,集成振动、温度、... 针对煤矿井下钻机状态监测中存在的多源传感器数据时空失配、噪声干扰强、故障特征微弱等问题,提出了一种基于多传感信息融合的远程在线监测系统。在硬件层面,设计以ATMEGA128L低功耗微处理器为核心的嵌入式采集节点,集成振动、温度、转速等多种传感器,通过LoRa与工业以太网实现数据可靠回传;在软件层面,提出时序对齐与一阶加权滑动平均去噪方法,解决数据异步与噪声耦合问题;进一步提取峰值、均值、均方根、波形指标与峭度等多维时域特征,并引入轻量化熵权融合机制,实现对轴承点蚀、齿轮断齿等隐性故障的敏感识别;最后,采用改进的集成学习算法,在边缘侧完成钻机运行状态的实时诊断。现场应用结果表明,该系统一致性指数稳定在0.9~1.0,可识别正常、异常、维修、故障4类状态,平均响应延迟低于200 ms,为煤矿钻机预测性维护提供了可部署、高可靠的一体化解决方案。 展开更多
关键词 钻机 多传感信息融合 嵌入式系统 熵权特征融合 集成学习 远程在线监测
原文传递
APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTA TING MECHANICAL FAILURE DIAGNOSIS 被引量:1
7
作者 周洁敏 林刚 +1 位作者 宫淑丽 陶云刚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期91-96,共6页
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se... At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter. 展开更多
关键词 multi-sensor data fus ion fuzzy neural network rotating mechanical fault diagnosis grade of members hip
在线阅读 下载PDF
Optimal fusion state estimator for a multi-sensor system subject to multiple packet dropouts
8
作者 Xu Han Jianhua Lu Guorong Zhao 《Journal of Control and Decision》 EI 2021年第2期175-183,共9页
In this note,we study the state estimation problem for a multi-sensor system subject to multiple packet dropouts.A novel optimal distributed fusion estimator is derived by applying a resending mechanism and a parallel... In this note,we study the state estimation problem for a multi-sensor system subject to multiple packet dropouts.A novel optimal distributed fusion estimator is derived by applying a resending mechanism and a parallel information filtering structure.It is shown that the proposed distributed fusion estimator has smaller estimation error covariance and less computation complexity when compared with the centralised Kalman like estimator with multiple intermittent measurements. 展开更多
关键词 multi-sensor system multiple packet dropouts distributed fusion estimator centralised Kalman-like estimator
原文传递
低矮巷道用向下取杆全自动钻机开发与应用
9
作者 姚康宇 彭光宇 姚亚峰 《煤矿机械》 2026年第1期162-165,共4页
为提高煤矿井下钻机的自动化水平、减少井下施工人员数量、优化井下作业环境,基于ZDY4500LFK型钻机的技术积累,研制了新一代ZDY4500LPK自动钻机。该钻机在机械结构设计、电控系统和功能方面实现了显著的技术创新,特别是转运器及杆仓结... 为提高煤矿井下钻机的自动化水平、减少井下施工人员数量、优化井下作业环境,基于ZDY4500LFK型钻机的技术积累,研制了新一代ZDY4500LPK自动钻机。该钻机在机械结构设计、电控系统和功能方面实现了显著的技术创新,特别是转运器及杆仓结构设计、向下取杆式杆仓、三大核心自研技术、多传感器协同控制和三层故障诊断。通过对比分析,重点考察了其核心结构优化及电控系统的特点。研究结果表明,ZDY4500LPK型钻机结构设计更加先进,性能指标显著提升,适应性更强;在转运器和杆仓结构的优化及电控系统控制方面进行了技术创新,充分验证了其在井下钻机自动化领域的技术优势。 展开更多
关键词 全自动钻机 一体式结构 多传感器系统 故障诊断 智能化钻进
原文传递
基于STM32的多传感智能小车控制系统设计
10
作者 郭峻宇 白英凯 +1 位作者 方孜儇 吴倩仪 《汽车电器》 2026年第1期54-56,共3页
为满足智能移动机器人在简单环境下的导航需求,本文设计基于STM32F103C8微控制器的智能移动平台控制系统。该系统集成超声波传感器、四路红外传感器及光敏电阻等感知设备,采用TB6612FNG驱动芯片控制四轮直流减速电机,通过蓝牙实现手机... 为满足智能移动机器人在简单环境下的导航需求,本文设计基于STM32F103C8微控制器的智能移动平台控制系统。该系统集成超声波传感器、四路红外传感器及光敏电阻等感知设备,采用TB6612FNG驱动芯片控制四轮直流减速电机,通过蓝牙实现手机远程控制,实现自主避障、红外循迹、光源追踪、蓝牙遥控等功能。测试结果显示,避障成功率达90%,循迹精度控制在5 cm以内,追光响应延迟小于0.5 s,蓝牙控制延迟小于0.3 s。该系统为汽车辅助驾驶系统的环境感知模块开发提供低成本验证平台。 展开更多
关键词 STM32微控制器 多传感器融合 智能控制 嵌入式系统 汽车电子
在线阅读 下载PDF
Hydraulic directional valve fault diagnosis using a weighted adaptive fusion of multi-dimensional features of a multi-sensor 被引量:12
11
作者 Jin-chuan SHI Yan REN +1 位作者 He-sheng TANG Jia-wei XIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第4期257-271,共15页
Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnos... Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnosis of it.Therefore,a fault diagnosis method based on multi-sensor information fusion is proposed in this paper to reduce the inaccuracy and uncertainty of traditional single sensor information diagnosis technology and to realize accurate monitoring for the location or diagnosis of early faults in such valves in noisy environments.Firstly,the statistical features of signals collected by the multi-sensor are extracted and the depth features are obtained by a convolutional neural network(CNN)to form a complete and stable multi-dimensional feature set.Secondly,to obtain a weighted multi-dimensional feature set,the multi-dimensional feature sets of similar sensors are combined,and the entropy weight method is used to weight these features to reduce the interference of insensitive features.Finally,the attention mechanism is introduced to improve the dual-channel CNN,which is used to adaptively fuse the weighted multi-dimensional feature sets of heterogeneous sensors,to flexibly select heterogeneous sensor information so as to achieve an accurate diagnosis.Experimental results show that the weighted multi-dimensional feature set obtained by the proposed method has a high fault-representation ability and low information redundancy.It can diagnose simultaneously internal wear faults of the hydraulic directional valve and electromagnetic faults of actuators that are difficult to diagnose by traditional methods.This proposed method can achieve high fault-diagnosis accuracy under severe working conditions. 展开更多
关键词 Hydraulic directional valve Internal fault diagnosis Weighted multi-dimensional features multi-sensor information fusion
原文传递
Research on dynamic characteristics of multi-sensor system in the case of cross-sensitivity 被引量:4
12
作者 TANG Xiaojun LIU Junhua 《Science China(Technological Sciences)》 SCIE EI CAS 2005年第1期1-22,共22页
In this study, the dynamic characteristic of a multi-sensor system made up of such sensors as are sensitive to several parameters is discussed, and the effect of cross-sensitivity on the precision of a measurement sys... In this study, the dynamic characteristic of a multi-sensor system made up of such sensors as are sensitive to several parameters is discussed, and the effect of cross-sensitivity on the precision of a measurement system is also discussed. A multi-sensor system is looked as a serial of a linear filter and a memoryless nonlinear system, i.e. Wiener system, and the subsequent information fusion system is regarded as a Hammerstein system, i.e. a serial of a memoryless nonlinear system and a linear filter. On the basis of static calibration, it is presented to determine the inverse filter in a Hammerstein system using blind deconvolution. In order to control the uncertainty of amplitude of signals recovered by blind deconvolution well, a regulation approach to regulating the inverse linear filter coefficient matrixes is presented according to the identity between inverse filter coefficient matrixes and static calibrating matrix. So the approximate inverse dynamic model of multi-sensor system is obtained, the degree of distortion of dynamic measurement result is reduced, the measurement precision is improved, and the need of practice can be reached. Simulation example and simulation result show that the recovered error of the inputs of sensor system, the frequency of which is 1/10 of sampling frequency, is 1/20 of the measurement results without dynamic compensation, and is one half of the measurement results with sole dynamic compensation, and the rapidity is improved 2 times. The dynamic compensation results of a metal oxide semiconductor methane sensor show that the dynamic measurement error is less than one half of that without dynamic compensation. So this method expands the bandwidth of multi-sensor system. 展开更多
关键词 dynamic compensation multi-sensor system cross-sensitivity BLIND deconvolution.
原文传递
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
13
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal multi-sensor data level fusion correlation function weighted value
在线阅读 下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
14
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) Data fusion (DF) multi-sensor
在线阅读 下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
15
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS multi-sensor DATA FUSION ALGORITHM ENGINE
在线阅读 下载PDF
Data Fusion Algorithm for Multi-Sensor Dynamic System Based on Interacting Multiple Model 被引量:3
16
作者 陈志锋 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期265-272,共8页
This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorre... This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorrelated sensor noises by using augmented fusion before model interacting. And eigenvalue decomposition is utilized to reduce calculation complexity and implement parallel computing. In simulation part, the feasibility of the algorithm was tested and verified, and the relationship between sensor number and the estimation precision was studied. Results show that simply increasing the number of sensor cannot always improve the performance of the estimation. Type and number of sensors should be optimized in practical applications. 展开更多
关键词 multi-sensor cross-correlated noises augmented fusion interacting multiple model(IMM)
原文传递
Progress and Achievements of Multi-sensor Fusion Navigation in China during 2019—2023 被引量:6
17
作者 Xingxing LI Xiaohong ZHANG +12 位作者 Xiaoji NIU Jian WANG Ling PEI Fangwen YU Hongjuan ZHANG Cheng YANG Zhouzheng GAO Quan ZHANG Feng ZHU Weisong WEN Tuan LI Jianchi LIAO Xin LI 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期102-114,共13页
Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and ot... Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and other aspects.However,in environments with limited satellite signals such as urban canyons,tunnels,and indoor spaces,it is difficult to provide accurate and reliable positioning services only by satellite navigation.Multi-source sensor integrated navigation can effectively overcome the limitations of single-sensor navigation through the fusion of different types of sensor data such as Inertial Measurement Unit(IMU),vision sensor,and LiDAR,and provide more accurate,stable and robust navigation information in complex environments.We summarizes the research status of multi-source sensor integrated navigation technology,and focuses on the representative innovations and applications of integrated navigation and positioning technology by major domestic scientific research institutions in China during 2019—2023. 展开更多
关键词 Simultaneous Localization And Mapping(SLAM) integrated navigation multi-sensor fusion
在线阅读 下载PDF
Multi-sensor measurement and data fusion technology for manufacturing process monitoring:a literature review 被引量:18
18
作者 Lingbao Kong Xing Peng +2 位作者 Yao Chen Ping Wang Min Xu 《International Journal of Extreme Manufacturing》 2020年第2期1-27,共27页
Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities i... Due to the rapid development of precision manufacturing technology,much research has been conducted in the field of multisensor measurement and data fusion technology with a goal of enhancing monitoring capabilities in terms of measurement accuracy and information richness,thereby improving the efficiency and precision of manufacturing.In a multisensor system,each sensor independently measures certain parameters.Then,the system uses a relevant signalprocessing algorithm to combine all of the independent measurements into a comprehensive set of measurement results.The purpose of this paper is to describe multisensor measurement and data fusion technology and its applications in precision monitoring systems.The architecture of multisensor measurement systems is reviewed,and some implementations in manufacturing systems are presented.In addition to the multisensor measurement system,related data fusion methods and algorithms are summarized.Further perspectives on multisensor monitoring and data fusion technology are included at the end of this paper. 展开更多
关键词 multi-sensor data fusion process monitoring additive manufacturing laser melting
在线阅读 下载PDF
Data acquisition,analysis and applications of multi-sensor integration 被引量:3
19
作者 Li Qingquan Liu Yong +1 位作者 Mao Qingzhou Yang Bisheng 《Engineering Sciences》 EI 2010年第1期2-10,共9页
This paper presents some key techniques for multi-sensor integration system, which is applied to the intelligent transportation system industry and surveying and mapping industry, e.g. road surface condition detection... This paper presents some key techniques for multi-sensor integration system, which is applied to the intelligent transportation system industry and surveying and mapping industry, e.g. road surface condition detection, digital map making. The techniques are synchronization control of multi-sensor, space-time benchmark for sensor data, and multi-sensor data fusion and mining. Firstly, synchronization control of multi-sensor is achieved through a synchronization control system which is composed of a time synchronization controller and some synchronization sub-controllers. The time synchronization controller can receive GPS time information from GPS satellites, relative distance information from distance measuring instrument and send space-time information to the synchronization sub-controller. The latter can work at three types of synchronization mode, i.e. active synchronization, passive synchronization and time service synchronization. Secondly, space-time benchmark can be established based on GPS time and global reference coordinate system, and can be obtained through position and azimuth determining system and synchronization control system. Thirdly, there are many types of data fusion and mining, e.g. GPS/Gyro/DMI data fusion, data fusion between stereophotogrammetry and PADS, data fusion between laser scanner and PADS, and data fusion between CCD camera and laser scanner. Finally, all these solutions presented in paper have been applied to two areas, i.e. land-bone intelligent road detection and measurement system and 3D measurement system based on unmanned helicopter. The former has equipped some highway engineering Co. , Ltd. and has been successfully put into use. The latter is an ongoing resealch. 展开更多
关键词 multi-sensor integration synchronization control of multi-sensor space-time benchmark data fusion
在线阅读 下载PDF
A novel multi-sensor multiple model particle filter with correlated noises for maneuvering target tracking 被引量:3
20
作者 胡振涛 Fu Chunling 《High Technology Letters》 EI CAS 2014年第4期355-362,共8页
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C... Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-sensor information fusion weight optimization correlated noises maneuvering target tracking
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部