The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monito...The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.展开更多
For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sens...For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.展开更多
Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural networ...Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural network and D-S evidence theory is proposed. In order to simplify the structure of BP neural network, two parallel BP neural networks are used to diagnose the fault data at first; and then, using the evidence theory to fuse the local diagnostic results, the accurate inference of the inaccurate information is realized, and the accurate diagnosis resuh is obtained. The method is applied to the fault diagnosis of the hydraulic driven servo system (HDSS) in a certain type of rocket launcher, which realizes the fault location and diagnosis of the main components of the hydraulic driven servo system, and effectively improves the reliability of the system.展开更多
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu...In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.展开更多
A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless s...A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal.Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals.Then the four eigenvectors are combined and sent to neural networks to dispose.The fusion results indicate that multi-sensor information fusion is superior to single-sensor information,and that cutting force signal can reflect the condition of cutting tool better than vibration signal.展开更多
The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distrib...The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.展开更多
Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtai...Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con...Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detectio...Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.展开更多
Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses an...Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.展开更多
This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure ...This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.展开更多
Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information ...Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.展开更多
Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of informatio...Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.展开更多
Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for manag...Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.展开更多
A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion u...A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.展开更多
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a...The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.展开更多
This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)syste...This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.展开更多
基金Liaoning Province Technology Key Project(2007231003,2006220019)Liaoning Province Talent Fund Projects(2005219005,2007R24)Liaoning Province Innovative Team Projects(2007T071,2006T076)
文摘The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time, can only using the monitoring data coming from a key monitoring point,and that is to say it can only handle one-dimensional time series.Given this shortage in the monitoring, the multi-sensor information fusion in the state estimation techniques would be intro- duced to the slope deformation monitoring system,and by the dynamic characteristics of deformation slope,the open pit slope would be regarded as a dynamic goal,the condi- tion monitoring of which would be regarded as a dynamic target tracking.Distributed In- formation fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced,and the simulation examples was used to prove its effectivenes.
文摘For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.
基金supported by the military scientific research plan(wj2015cj020001)
文摘Aiming at the problem of incomplete information and uncertainties in the diagnosis of complex system by using single parameter, a new method of multi-sensor information fusion fault diagnosis based on BP neural network and D-S evidence theory is proposed. In order to simplify the structure of BP neural network, two parallel BP neural networks are used to diagnose the fault data at first; and then, using the evidence theory to fuse the local diagnostic results, the accurate inference of the inaccurate information is realized, and the accurate diagnosis resuh is obtained. The method is applied to the fault diagnosis of the hydraulic driven servo system (HDSS) in a certain type of rocket launcher, which realizes the fault location and diagnosis of the main components of the hydraulic driven servo system, and effectively improves the reliability of the system.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.
文摘A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal.Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals.Then the four eigenvectors are combined and sent to neural networks to dispose.The fusion results indicate that multi-sensor information fusion is superior to single-sensor information,and that cutting force signal can reflect the condition of cutting tool better than vibration signal.
基金This work was supported by the National Natural Science Foundation of China(No.51876119)the Shanghai Pujiang Program(No.17PJD017).
文摘The conventional control methods of variable air volume (VAV) air conditioning systems usually assume that the indoor air is well mixed, and consider each building zone as one node with homogeneous temperature distribution. The average temperature is subsequently used as the controlled parameter in the VAV cascade control process, which might cause uneven temperature distribution and unsatisfactory thermal comfort. This paper presents a coupled simulation of computational fluid dynamics (CFD) and building energy simulation (BES) for the VAV system in an office building located in Shanghai for the purpose of simulating the building, the VAV control system, and indoor thermal environment simultaneously. An external interface is developed to integrate the CFD and BES models based on quasi-dynamic coupling approach. Based upon the developed co-simulation platform, the novel VAV control method is further proposed by fusing information from multiple sensors. By adding two temperature sensors to constrain the thermal comfort of the occupied zone, the supply air temperature setpoint of the VAV terminal unit can be reset in real time. The novel control method is embedded into the co-simulation platform and compared with the conventional VAV control approach. The results illustrate that the temperature distribution under the proposed method is more uniform. At most times of the typical test day, the air diffusion performance indexes (ADPIs) for the proposed method are above 80%, while the ADPIs for the conventional control method are between 60% and 80%. Due to multi-sensor information fusion, the proposed VAV control approach has better ability to ensure the indoor thermal comfort.
基金supported by the National Natural Science Foundation of China(Grant No.52272438)the Jiangsu Agricultural Science and Technology Innovation[Grant No.CX(21)3149]+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Yueshengjihua-2206)the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2007).
文摘Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
基金supported by the National Natural Science Foundation of China(62222212).
文摘Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金National Natural Science Foundation of China(grant numbers 42293351,41877239,51422904 and 51379112).
文摘Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.
文摘Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.
文摘This study analyzes the User Interface(UI)and User Experience(UX)of information systems that provide local government information.The systems analyzed are the Local Administrative Comprehensive Information Disclosure System(Zheripan),the Integrated Local Financial Disclosure System(Qinching Online),and the Local Regulations Information System(12348 Zhejiang Legal Network).The Local Administrative Comprehensive Information Disclosure System offers public service and personnel information,while the Integrated Local Financial Disclosure System provides financial information,and the Local Regulations Information System offers legal information as its main content.The analysis framework utilized three elements:objective data,psychological factors,and heuristic evaluation.The results of the first objective data analysis show that approximately 70%of visits to Zheripan and Qinching Online are through search,and the time spent on the homepage is short.In contrast,about 70%of visits to the 12348 Zhejiang Legal Network are direct visits,with users browsing multiple pages with a clear purpose.In terms of data provision methods,Zheripan provides two types of data in three formats,Qinching Online offers 28 types of data in five formats,and 12348 Zhejiang Legal Network provides one type of information in a single format.The second psychological factor analysis found that all three websites had a number of menus suitable for short-term cognitive capacity.However,only one of the sites had a layout that considered the user’s eye movement.Finally,the heuristic evaluation revealed that most of the evaluation criteria were not met.While the design is relatively simple and follows standards,feedback for users,error prevention,and help options were lacking.Moreover,the user-specific usability was low,and the systems remained at the information-providing level.Based on these findings,both short-term and long-term improvement measures for creating an interactive system beyond simple information disclosure are proposed.
文摘Nowadays,spatiotemporal information,positioning,and navigation services have become critical components of new infrastructure.Precise positioning technology is indispensable for determining spatiotemporal information and providing navigation services.
文摘Background: For nursing students, gathering social information is essential for understanding healthcare and social issues and developing critical thinking and decision-making skills. However, the choice of information sources varies by age and individual habits. With the widespread use of the internet, there are notable differences between younger and older generations in their reliance on the internet versus traditional media sources like newspapers and television. Given the wide age range and diverse backgrounds of nursing students, understanding generational differences in information-gathering methods is important for implementing effective education. Purpose: The purpose of this study is to identify how nursing students in different age groups obtain social information and to examine media usage trends by age group. Additionally, we aim to use the findings to provide insights into effective information dissemination methods in nursing education. Results: The results showed that nursing students in their teens to forties, regardless of gender, primarily relied on the internet as their main information source, with television playing a secondary role. In contrast, students in their fifties tended to obtain information more often from newspapers and television than from the internet. This highlights an age-related difference in preferred information sources, with older students showing a greater reliance on traditional media. Conclusions: This study demonstrates that nursing students use different information-gathering methods based on their age, suggesting a need to custo-mize information dissemination strategies in nursing education. Digital media may be more effective for younger students, while traditional media or printed materials might better serve older students. Educational institutions should consider these generational differences in media usage and adopt strategies that meet the diverse needs of their student populations.
文摘Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.
文摘A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.
基金supported by the National Natural Science(No.U19A2063)the Jilin Provincial Development Program of Science and Technology (No.20230201080GX)the Jilin Province Education Department Scientific Research Project (No.JJKH20230851KJ)。
文摘The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.
文摘This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.