At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se...At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.展开更多
For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system ...For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF.展开更多
This study proposes a Kalman filter-based indoor vehicle positioning method for cases in which the steering angle and rotation speed of the vehicle’s wheels are unknown.By fusing the position and velocity data from t...This study proposes a Kalman filter-based indoor vehicle positioning method for cases in which the steering angle and rotation speed of the vehicle’s wheels are unknown.By fusing the position and velocity data from the ultra-wideband sensors and acceleration and orientation data from the inertial measurement unit,we developed two algorithms to estimate the real-time position of the vehicle based on a linear Kalman filter and extended Kalman filter,respectively.We then conducted simulations and experiments to examine the performances of the algorithms.In the experiment,the Kalman filtering hyperparameters are configured,and we then ran the two algorithms to determine the positioning precision and accuracy with the ground truth produced via LiDAR.We verified that our method can improve precision and accuracy compared with the raw positioning data and can achieve desirable effects for indoor vehicle positioning when vehicles travel at low speeds.展开更多
In this paper we present an evidence-gathering approach to slove the multi-sensor data fusion problem. It uses an improved Hough transformation method rather than the usual statistical or geometric approach to extract...In this paper we present an evidence-gathering approach to slove the multi-sensor data fusion problem. It uses an improved Hough transformation method rather than the usual statistical or geometric approach to extract the directions and positions of the walls in a room and update the location (orientation and position)of a mobile robot. The simulation results show that the proposed method is of practical importance since it is very simple and easy to implement.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea- surements. The measuring system is based on two odometers placed on the axis of the wheels combined w...This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea- surements. The measuring system is based on two odometers placed on the axis of the wheels combined with a magnetic compass to determine the position and orientation. Determination of displacements is implemented by an accelerometer. Data coming from sensors are combined and used as inputs to unscented Kalman filter (UKF). Two data fusion architectures: measurement fusion (MF) and state vector fusion (SVF) are proposed to merge the available measurements. Comparative studies of these two architectures show that the MF architecture provides states estimation with relatively less uncertainty compared to SVF. However, odometers measurements determine the position with relatively high uncertainty followed by the accelerometer measurements. Therefore, fusion in the navigation system is needed. The obtained simulation results show the effectiveness of proposed architectures.展开更多
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila...To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.展开更多
The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket ...The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.展开更多
A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean squ...A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving.This study aims to enhan...Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving.This study aims to enhance the learning efficiency ofmulti-sensor feature fusion in autonomous driving tasks,thereby improving the safety and responsiveness of the system.To achieve this goal,we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities:visual,radar,and lidar data.The model optimizes the feature fusion process through the introduction of two novel mechanisms:Sparse Channel Pooling(SCP)and Residual Triplet-Attention(RTA).Firstly,the SCP mechanism enables the model to adaptively filter out salient feature channels while eliminating the interference of redundant features.This enhances the model’s emphasis on critical features essential for decisionmaking and strengthens its robustness to environmental variability.Secondly,the RTA mechanism addresses the issue of feature misalignment across different modalities by effectively aligning key cross-modal features.This alignment reduces the computational overhead associated with redundant features and enhances the overall efficiency of the system.Furthermore,this study incorporates a reinforcement learning module designed to optimize strategies within a continuous action space.By integrating thismodulewith the feature fusion learning process,the entire system is capable of learning efficient driving strategies in an end-to-end manner within the CARLA autonomous driving simulator.Experimental results demonstrate that the proposedmodel significantly enhances the perception and decision-making accuracy of the autonomous driving system in complex traffic scenarios while maintaining real-time responsiveness.This work provides a novel perspective and technical pathway for the application of multi-sensor data fusion in autonomous driving.展开更多
In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design....In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.展开更多
Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challen...Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.展开更多
Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time...Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation.展开更多
Accurate prediction of manufacturing carbon emissions is of great significance for subsequent low-carbon optimization.To improve the accuracy of carbon emission prediction with insufficient hobbing data,combining the ...Accurate prediction of manufacturing carbon emissions is of great significance for subsequent low-carbon optimization.To improve the accuracy of carbon emission prediction with insufficient hobbing data,combining the advantages of improved algorithm and supplementary data,a method of carbon emission prediction of hobbing based on cross-process data fusion was proposed.Firstly,we analyzed the similarity of machining process and manufacturing characteristics and selected milling data as the fusion material for hobbing data.Then,the adversarial learning was used to reduce the difference between data from the two processes,so as to realize the data fusion at the characteristic level.After that,based on Meta-Transfer Learning method,the carbon emission prediction model of hobbing was established.The effectiveness and superiority of the proposed method were verified by case analysis and comparison.The prediction accuracy of the proposed method is better than other methods across different data sizes.展开更多
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a...Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.展开更多
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli...The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.展开更多
This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was...This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifi c tunnel segments.Additionally,the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method.Subsequently,a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions.Meanwhile,risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information.Finally,model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study,yielding favorable risk prediction results and enabling effi cient information fusion and support for construction decision-making.展开更多
This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, ...This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, MotionSense, and PAMAP2—to develop a generalized MLP model for classifying six human activities. Performance analysis of the fused model for each dataset reveals accuracy rates of 95.83 for WISDM, 97 for DaLiAc, 94.65 for MotionSense, and 98.54 for PAMAP2. A comparative evaluation was conducted between the fused MLP model and the individual dataset models, with the latter tested on separate validation sets. The results indicate that the MLP model, trained on the fused dataset, exhibits superior performance relative to the models trained on individual datasets. This finding suggests that multisource data fusion significantly enhances the generalization and accuracy of HAR systems. The improved performance underscores the potential of integrating diverse data sources to create more robust and comprehensive models for activity recognition.展开更多
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult...This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.展开更多
文摘At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.
文摘For complementarity and redundancy of multi-sensor data fusion (MSDF) system,it is an effective approach for multiple components measurement.In order to measure nutrient solution on-line,a dynamic and complex system under greenhouse environment,sensors should have intelligent properties including self-calibration and self-compensation. Meanwhile,it is necessary for multiple sensors to cooperate and interact for enhancing reliability of multi-sensor system. Because of the properties of multi-agent system (MAS),it is an appropriate tool to study MSDF system.This paper proposed an architecture of MSDF system based on MAS for the multiple components measurement of nutrient solution.The sensor agent's structure and function modules are analyzed and described in detail,the formal definitions are given,too.The relations of the sensors are modeled to implement reliability diagnosis of the multi-sensor system,so that the reliability of nutrient control system is enhanced.This study offers an effective approach for the study of MSDF.
基金the National Natural Science Foundation of China(Nos.61903249,61973215,and 62022055)the Shandong Key Research and Development Project(No.2019JZZY020131)。
文摘This study proposes a Kalman filter-based indoor vehicle positioning method for cases in which the steering angle and rotation speed of the vehicle’s wheels are unknown.By fusing the position and velocity data from the ultra-wideband sensors and acceleration and orientation data from the inertial measurement unit,we developed two algorithms to estimate the real-time position of the vehicle based on a linear Kalman filter and extended Kalman filter,respectively.We then conducted simulations and experiments to examine the performances of the algorithms.In the experiment,the Kalman filtering hyperparameters are configured,and we then ran the two algorithms to determine the positioning precision and accuracy with the ground truth produced via LiDAR.We verified that our method can improve precision and accuracy compared with the raw positioning data and can achieve desirable effects for indoor vehicle positioning when vehicles travel at low speeds.
基金the High Technology Research and Development Programme of China
文摘In this paper we present an evidence-gathering approach to slove the multi-sensor data fusion problem. It uses an improved Hough transformation method rather than the usual statistical or geometric approach to extract the directions and positions of the walls in a room and update the location (orientation and position)of a mobile robot. The simulation results show that the proposed method is of practical importance since it is very simple and easy to implement.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
文摘This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy mea- surements. The measuring system is based on two odometers placed on the axis of the wheels combined with a magnetic compass to determine the position and orientation. Determination of displacements is implemented by an accelerometer. Data coming from sensors are combined and used as inputs to unscented Kalman filter (UKF). Two data fusion architectures: measurement fusion (MF) and state vector fusion (SVF) are proposed to merge the available measurements. Comparative studies of these two architectures show that the MF architecture provides states estimation with relatively less uncertainty compared to SVF. However, odometers measurements determine the position with relatively high uncertainty followed by the accelerometer measurements. Therefore, fusion in the navigation system is needed. The obtained simulation results show the effectiveness of proposed architectures.
文摘To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis.
文摘The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.
基金The National High Technology Research and Development Program of China(863Program)(No.2001AA602021)
文摘A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
文摘Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving.This study aims to enhance the learning efficiency ofmulti-sensor feature fusion in autonomous driving tasks,thereby improving the safety and responsiveness of the system.To achieve this goal,we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities:visual,radar,and lidar data.The model optimizes the feature fusion process through the introduction of two novel mechanisms:Sparse Channel Pooling(SCP)and Residual Triplet-Attention(RTA).Firstly,the SCP mechanism enables the model to adaptively filter out salient feature channels while eliminating the interference of redundant features.This enhances the model’s emphasis on critical features essential for decisionmaking and strengthens its robustness to environmental variability.Secondly,the RTA mechanism addresses the issue of feature misalignment across different modalities by effectively aligning key cross-modal features.This alignment reduces the computational overhead associated with redundant features and enhances the overall efficiency of the system.Furthermore,this study incorporates a reinforcement learning module designed to optimize strategies within a continuous action space.By integrating thismodulewith the feature fusion learning process,the entire system is capable of learning efficient driving strategies in an end-to-end manner within the CARLA autonomous driving simulator.Experimental results demonstrate that the proposedmodel significantly enhances the perception and decision-making accuracy of the autonomous driving system in complex traffic scenarios while maintaining real-time responsiveness.This work provides a novel perspective and technical pathway for the application of multi-sensor data fusion in autonomous driving.
文摘In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.
基金funded by the National Natural Science Foundation of China(42361058)supported by the Science and Technology Program of Gansu Province(22YF7FA074)。
文摘Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.
基金supported by grants from the National Key Research and Development Program of China(2022YFD2001103)the National Natural Science Foundation of China(42371373)。
文摘Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation.
基金Supported by National Natural Science Foundation of China(Grant No.52005062)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2023NSCQ-MSX0390)。
文摘Accurate prediction of manufacturing carbon emissions is of great significance for subsequent low-carbon optimization.To improve the accuracy of carbon emission prediction with insufficient hobbing data,combining the advantages of improved algorithm and supplementary data,a method of carbon emission prediction of hobbing based on cross-process data fusion was proposed.Firstly,we analyzed the similarity of machining process and manufacturing characteristics and selected milling data as the fusion material for hobbing data.Then,the adversarial learning was used to reduce the difference between data from the two processes,so as to realize the data fusion at the characteristic level.After that,based on Meta-Transfer Learning method,the carbon emission prediction model of hobbing was established.The effectiveness and superiority of the proposed method were verified by case analysis and comparison.The prediction accuracy of the proposed method is better than other methods across different data sizes.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.
基金supported by the National Natural Science Foundation of China(No.52275104)the Science and Technology Innovation Program of Hunan Province(No.2023RC3097).
文摘The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.
基金supported by the National Natural Science Foundation of China (grant numbers 42293351, and U2468221)。
文摘This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifi c tunnel segments.Additionally,the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method.Subsequently,a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions.Meanwhile,risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information.Finally,model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study,yielding favorable risk prediction results and enabling effi cient information fusion and support for construction decision-making.
基金supported by the Royal Golden Jubilee(RGJ)Ph.D.Programme(Grant No.PHD/0079/2561)through the National Research Council of Thailand(NRCT)and Thailand Research Fund(TRF).
文摘This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, MotionSense, and PAMAP2—to develop a generalized MLP model for classifying six human activities. Performance analysis of the fused model for each dataset reveals accuracy rates of 95.83 for WISDM, 97 for DaLiAc, 94.65 for MotionSense, and 98.54 for PAMAP2. A comparative evaluation was conducted between the fused MLP model and the individual dataset models, with the latter tested on separate validation sets. The results indicate that the MLP model, trained on the fused dataset, exhibits superior performance relative to the models trained on individual datasets. This finding suggests that multisource data fusion significantly enhances the generalization and accuracy of HAR systems. The improved performance underscores the potential of integrating diverse data sources to create more robust and comprehensive models for activity recognition.
基金supported by the National Natural Science Foundation of China (Nos. 62276204, 62203343)。
文摘This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.