期刊文献+
共找到644篇文章
< 1 2 33 >
每页显示 20 50 100
Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning
1
作者 Weicong Tan Qiwu Wu +2 位作者 Lingzhi Jiang Tao Tong Yunchen Su 《Computers, Materials & Continua》 2025年第11期3621-3652,共32页
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ... This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts. 展开更多
关键词 Dung beetle optimizer algorithm swarm intelligence MULTI-UAV trajectory planning complex environments
在线阅读 下载PDF
Joint planning method for cross-domain unmanned swarm target assignment and mission trajectory
2
作者 WANG Ning LIANG Xiaolong +2 位作者 LI Zhe HOU Yueqi YANG Aiwu 《Journal of Systems Engineering and Electronics》 2025年第3期736-753,共18页
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss... Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA. 展开更多
关键词 cross-domain swarm unmanned system target assignment trajectory planning joint planning hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:3
3
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 Hybrid manipulator Bezier curve Improved optimization algorithm trajectory planning Multi-objective optimization
在线阅读 下载PDF
A multi-objective multi-memetic algorithm for network-wide conflict-free 4D flight trajectories planning 被引量:9
4
作者 Su YAN Kaiquan CAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1161-1173,共13页
Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose... Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories(4DTs)(3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategiclevel conflict management is developed in this paper.Specifically,a bi-objective N4 DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm(MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4 DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment. 展开更多
关键词 Air traffic flow management 4D trajectory planning Multi-memetic algorithm Multi-objective optimization Network-wide strategic conflict management
原文传递
KNOT POINT PLANNING FOR CARTESIAN TRAJECTORY GENERATION BASED ON INHERITANCE BISECTION ALGORITHM
5
作者 YanBo YanGuozheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期241-245,共5页
The computation algorithm of knot point planning for Cartesian trajectorygeneration of manipulator is investigated, A novel inheritance bisection algorithm (IBA) based onconventional bisection algorithm (B A) is propo... The computation algorithm of knot point planning for Cartesian trajectorygeneration of manipulator is investigated, A novel inheritance bisection algorithm (IBA) based onconventional bisection algorithm (B A) is proposed. IBA has two steps. The first step is the 1 stknot point planning under lower set position accuracy; the second step is the 2nd knot pointplanning that inherits the results of the 1st planning under higher set position accuracy. Thesimulation results reveal that the number of inverse kinematical calculation (IKC) caused by IBA isdecreased compared with BA. IBA is more efficient to plan knot points. 展开更多
关键词 trajectory planning Inheritance bisection algorithm Knot point planning
在线阅读 下载PDF
Time-optimal trajectory planning based on improved adaptive genetic algorithm
6
作者 孙农亮 王艳君 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期103-108,共6页
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ... This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability. 展开更多
关键词 time-optimal trajectory planning(TOTP) improved adaptive genetic algorithm(IAGA) cubic triangular Bezier spline(CTBS)
在线阅读 下载PDF
Evolutionary Trajectory Planning for an Industrial Robot 被引量:6
7
作者 R.Saravanan S.Ramabalan +1 位作者 C.Balamurugan A.Subash 《International Journal of Automation and computing》 EI 2010年第2期190-198,共9页
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th... This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed. 展开更多
关键词 Multi-objective optimal trajectory planning oscillating obstacles elitist non-dominated sorting genetic algorithm (NSGA-II) multi-objective differential evolution (MODE) multi-objective performance metrics.
在线阅读 下载PDF
An Intelligent Multi-robot Path Planning in a Dynamic Environment Using Improved Gravitational Search Algorithm 被引量:5
8
作者 P.K.Das H.S.Behera +1 位作者 P.K.Jena B.K.Panigrahi 《International Journal of Automation and computing》 EI CSCD 2021年第6期1032-1044,共13页
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based... This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation. 展开更多
关键词 Gravitational search algorithm multi-robot path planning average total trajectory path deviation average uncovered trajectory target distance average path length
原文传递
4-D Trajectory Prediction and Dynamic Planning of Aircraft Taxiing Considering Time and Fuel 被引量:2
9
作者 LI Nan ZHANG Lei +1 位作者 SUN Yu GAO Zheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期852-866,共15页
Most of the traditional taxi path planning studies assume that the aircraft is in uniform speed,and the optimization goal is the shortest taxi time.Although it is easy to solve,it does not consider the changes in the ... Most of the traditional taxi path planning studies assume that the aircraft is in uniform speed,and the optimization goal is the shortest taxi time.Although it is easy to solve,it does not consider the changes in the speed profile of the aircraft when turning,and the shortest taxi time does not necessarily bring the best taxi fuel consumption.In this paper,the number of turns is considered,and the improved A*algorithm is used to obtain the P static paths with the shortest sum of the straight-line distance and the turning distance of the aircraft as the feasible taxi paths.By balancing taxi time and fuel consumption,a set of Pareto optimal speed profiles are generated for each preselected path to predict the 4-D trajectory of the aircraft.Based on the 4-D trajectory prediction results,the conflict by the occupied time window in the taxiing area is detected.For the conflict aircraft,based on the priority comparison,the waiting or changing path is selected to solve the taxiing conflict.Finally,the conflict free aircraft taxiing path is generated and the area occupation time window on the path is updated.The experimental results show that the total taxi distance and turn time of the aircraft are reduced,and the fuel consumption is reduced.The proposed method has high practical application value and is expected to be applied in real-time air traffic control decision-making in the future. 展开更多
关键词 air transportation trajectory planning heuristic algorithm taxi time taxi fuel consumption
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
10
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
UAV trajectory planning based on improved bidirectional RRT algorithm
11
作者 WANG Mengqiao LIU Erlin 《Journal of Measurement Science and Instrumentation》 2025年第4期578-587,共10页
In response to the problems of low sampling efficiency,strong randomness of sampling points,and the tortuous shape of the planned path in the traditional rapidly-exploring random tree(RRT)algorithm and bidirectional R... In response to the problems of low sampling efficiency,strong randomness of sampling points,and the tortuous shape of the planned path in the traditional rapidly-exploring random tree(RRT)algorithm and bidirectional RRT algorithm used for unmanned aerial vehicle(UAV)path planning in complex environments,an improved bidirectional RRT algorithm was proposed.The algorithm firstly adopted a goal-oriented strategy to guide the sampling points towards the target point,and then the artificial potential field acted on the random tree nodes to avoid collision with obstacles and reduced the length of the search path,and the random tree node growth also combined the UAV’s own flight constraints,and by combining the triangulation method to remove the redundant node strategy and the third-order B-spline curve for the smoothing of the trajectory,the planned path was better.The planned paths were more optimized.Finally,the simulation experiments in complex and dynamic environments showed that the algorithm effectively improved the speed of trajectory planning and shortened the length of the trajectory,and could generate a safe,smooth and fast trajectory in complex environments,which could be applied to online trajectory planning. 展开更多
关键词 complex environment bidirectional RRT algorithm target orientation strategy artificial potential field method triangular inequality cut cubic B-spline online trajectory planning
在线阅读 下载PDF
基于改进A^(*)算法的水空两栖机器人多目标路径规划 被引量:4
12
作者 沈跃 孙浩 +2 位作者 沈亚运 郭奕 刘慧 《农业工程学报》 北大核心 2025年第6期62-70,共9页
实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水... 实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水空两栖机器人路径规划算法。首先采集障碍物分布情况和高度信息,建立多水域2.5维栅格地图;其次在A^(*)算法评价函数中加入能耗、时间及安全代价,通过调节不同权重获取相应初始路径;然后通过动态分配权重改进启发式函数,加快搜索效率,并利用目标成本函数对所有目标进行优先级判定,实现多目标路径规划;最后通过增加空中模态切换点、删除冗余点及采用B样条曲线优化路径,生成可连接多水域多水质检测点的三维平滑轨迹。仿真试验结果表明:与传统A^(*)算法和陆空A^(*)算法相比,改进A^(*)算法迭代次数分别减少70.04%与68.07%,路径长度分别减少35.44%与7.6%,总转角分别减小83.63%与8.65%,危险节点数分别减少80.67%与33.33%。真实水域试验表明:改进A^(*)算法的迭代次数比传统A^(*)算法和陆空A^(*)算法减少84.89%与83.78%,路径长度分别减少12%与0.6%,总转角分别减小73.21%与22.1%,危险节点数分别减少84.62%与80%,可规划出通过多个目标点的安全、平滑路径,有效提高水质检测效率,为多栖机器人自主导航提供参考。 展开更多
关键词 多目标 路径规划 水空两栖机器人 A^(*)算法 轨迹优化
在线阅读 下载PDF
协作机器人时间最优轨迹规划研究 被引量:1
13
作者 张涛 张建业 吴子朝 《机床与液压》 北大核心 2025年第3期12-19,共8页
通过调研主流协作机器人参数,针对搬运、码垛等轻工领域需求制定性能指标,采用“臂腕分离”方法进行机器人构型设计及关节模组研究。以该机器人为研究对象,为实现过指定路径点的时间最优轨迹规划,并确保各关节运动平滑、连续,在满足运... 通过调研主流协作机器人参数,针对搬运、码垛等轻工领域需求制定性能指标,采用“臂腕分离”方法进行机器人构型设计及关节模组研究。以该机器人为研究对象,为实现过指定路径点的时间最优轨迹规划,并确保各关节运动平滑、连续,在满足运动学约束条件下,使用3-5-3多项式插值方法进行关节空间轨迹规划。鉴于经典海洋捕食者算法局部搜索能力较差的问题,引入混沌映射初始化和自适应参数策略进行改进,并将新算法应用于3-5-3多项式插值的时间最优轨迹规划中。通过MATLAB仿真分析,改进后的各关节轨迹平滑连续且运行时间缩短,证明该改进算法在机器人轨迹规划中的有效性和可行性。 展开更多
关键词 协作机器人 时间最优轨迹规划 海洋捕食者算法
在线阅读 下载PDF
基于改进GWO算法的掘进机断面成形轨迹规划方法研究 被引量:1
14
作者 张旭辉 汤杜炜 +3 位作者 杨文娟 董征 田琛辉 余恒翰 《工程设计学报》 北大核心 2025年第3期296-307,共12页
巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(... 巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。 展开更多
关键词 掘进机 轨迹规划 断面成形 欠挖面积 灰狼优化算法
在线阅读 下载PDF
基于混沌莱维粒子群算法的机械臂轨迹规划 被引量:2
15
作者 盖荣丽 王康 王晓红 《组合机床与自动化加工技术》 北大核心 2025年第5期101-105,109,共6页
针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索... 针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索能力和跳出局部最优解能力。以六自由度机械臂为研究对象,建立时间优化目标模型,以3-5-3多项式插值方法为基础对其进行轨迹规划。将该算法应用于求解多种测试函数以及机器人时间最优轨迹规划问题,与遗传算法改进的粒子群算法(PSO-GA)、鲸鱼优化算法(WOA)和布谷鸟搜索算法(CS)相比,该算法取得了较好的效果。优化后得到的机械臂位移、速度和加速度曲线平滑、无突变。结果表明,所提出的优化算法能够有效降低轨迹的执行时间。 展开更多
关键词 粒子群算法 Tent混沌映射 莱维飞行 时间最优 轨迹规划
在线阅读 下载PDF
基于改进MOGWO算法的并联机器人轨迹优化 被引量:2
16
作者 郭彤颖 叶相涛 陈宇 《组合机床与自动化加工技术》 北大核心 2025年第6期20-25,共6页
针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运... 针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运动轨迹进行规划;其次,对多目标灰狼算法在收敛因子、围猎机制、头狼更新3个方面进行改进优化,优化后的算法具有搜索能力强、收敛速度快等优势;最终,利用改进的多目标灰狼算法对多项式轨迹进行时间-能耗-冲击多目标优化,仿真实验表明优化方法不仅缩短了机器人的运行时间,在降低能耗和减小冲击方面也取得了显著成效,使机器人总体性能得到了有效地提升。 展开更多
关键词 并联机器人 轨迹规划 改进多目标灰狼算法 多目标优化
在线阅读 下载PDF
基于改进RRT^(*)算法的无人机三维航迹规划
17
作者 陈明强 周子杨 +2 位作者 张勇 解靖涛 刘俊杰 《兵器装备工程学报》 北大核心 2025年第4期192-199,234,共9页
针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目... 针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目标点的引导搜索与环境的影响,将算法搜索过程中的采样范围约束在指向目标点的一定角度方向内,并根据环境动态调整方向,减少采样点的无效搜索;对障碍物引入人工势场法中的斥力场,根据斥力势能大小相应地改变步长长度,进一步提高搜索效率;对航迹过于冗长曲折的问题,进行剪枝优化与B样条曲线平滑处理以提高航迹的平滑性。通过Matlab仿真实验,验证了所提出的改进算法在不同环境中均能以较快的搜索速度得到更优的航迹。 展开更多
关键词 RRT^(*) 三维航迹规划 贪婪算法 斥力场 B样条曲线
在线阅读 下载PDF
基于MPC的飞机牵引车轨迹跟踪
18
作者 张军 黄明辉 +3 位作者 王玥琳 阳星 叶敏 贾永乐 《北京航空航天大学学报》 北大核心 2025年第9期2916-2926,共11页
为能满足物流机场短时间、高频次的快捷飞机牵引需求,提出了基于无人驾驶技术的快速牵引方法。采用“理论建模-算法设计-算例测试和仿真优化-样机实验”的技术路线和方法,以10t飞机牵引车为对象,构建牵引车的运动学模型,确定牵引车的约... 为能满足物流机场短时间、高频次的快捷飞机牵引需求,提出了基于无人驾驶技术的快速牵引方法。采用“理论建模-算法设计-算例测试和仿真优化-样机实验”的技术路线和方法,以10t飞机牵引车为对象,构建牵引车的运动学模型,确定牵引车的约束条件和控制量,通过增加防碰撞处理、最小转弯半径和路径平滑的方式改进A*算法,生成牵引车运动轨迹;设计模型预测控制(MPC)的轨迹跟踪控制器,构建MATLAB/Simulink和ADAMS联合仿真模型,通过轨迹跟踪仿真实验优化MPC的控制参数,并在改造的电传动飞机牵引车样机上开展轨迹跟踪实验。结果表明:改进的A*算法满足飞机牵引车工作路径规划和最小转弯半径要求,联合仿真方法优化了MPC控制器,在样机上实现了较好的跟踪精度,弯道和直线跟踪误差的标准差分别为0.362m和0.128m,实现了飞机牵引车的无人驾驶功能,为智慧物流机场的无人牵引飞机奠定技术基础。 展开更多
关键词 电传动飞机牵引车 无人驾驶技术 路径规划 改进A*算法 轨迹跟踪 模型预测控制
原文传递
掉头场景下自动驾驶汽车的决策与轨迹规划
19
作者 田国富 郑佳强 《科学技术与工程》 北大核心 2025年第18期7823-7831,共9页
针对自动驾驶汽车在双向单车道下的掉头场景,采用模糊推理提出了一种安全决策方法并基于车辆空间分布关系建立掉头数学模型,确定7个关键控制点,改进粒子群算法的搜索策略,并提出一种高效舒适的掉头轨迹规划方法。安全决策方法首先将掉... 针对自动驾驶汽车在双向单车道下的掉头场景,采用模糊推理提出了一种安全决策方法并基于车辆空间分布关系建立掉头数学模型,确定7个关键控制点,改进粒子群算法的搜索策略,并提出一种高效舒适的掉头轨迹规划方法。安全决策方法首先将掉头时本车道和目标车道上的车辆与自车的相对距离和转向时最小安全距离的差值建立隶属关系,选择安全性更高的时刻进行掉头;轨迹规划方法结合车辆空间分布特征,改进粒子群算法的约束,提出一种新的搜索策略,使其能够快速收敛到最优极值,规划出掉头的最优路径。研究表明:所提出的决策与轨迹规划方法可以安全、高效地完成掉头。 展开更多
关键词 自动驾驶 模糊推理 轨迹规划 粒子群算法 数学模型
在线阅读 下载PDF
面向突防作战的无人机集群融合路径规划算法
20
作者 王蕾 齐铎 林晋福 《信息工程大学学报》 2025年第5期624-630,共7页
针对低空突防作战中无人机(UAV)集群动态路径规划问题,提出一种融合改进D*Lite算法与动态窗口法(DWA)的协同规划方法。通过构建包含雷达探测、红外搜索与地形遮蔽的威胁环境模型,在D*Lite中,引入障碍物膨胀与自适应权重调节机制,显著提... 针对低空突防作战中无人机(UAV)集群动态路径规划问题,提出一种融合改进D*Lite算法与动态窗口法(DWA)的协同规划方法。通过构建包含雷达探测、红外搜索与地形遮蔽的威胁环境模型,在D*Lite中,引入障碍物膨胀与自适应权重调节机制,显著提升航迹安全性和全局最优性;在DWA中,设计关键点引导和伙伴位置预测策略,有效增强动态避障与集群协同能力。仿真结果表明,所提方法规划效率提升32.80%,路径曲率改善27.27%,最小安全距离超过10 m,UAV平台间距保持在20.62 m以上,有效克服单一算法的局限,自动生成满足运动约束的优化航迹。所提方法证明可行有效,为复杂低空环境下UAV集群路径规划提供可靠的技术解决方案。 展开更多
关键词 无人机集群 路径规划 D*Lite-DWA融合算法 威胁规避
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部