Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim...Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.展开更多
This paper proposes a new block matching criterion called the bit-correlation matching function for image sequence coding. When using the identical fast searching algorithm, the bit-correlation matching function not o...This paper proposes a new block matching criterion called the bit-correlation matching function for image sequence coding. When using the identical fast searching algorithm, the bit-correlation matching function not only results in nearly the same accuracy in displacement estimation as the mean square error function, but also makes the algorithm low in computation complexity and easy to parallel implementation, thus reducing the coding time of image sequence efficiently.展开更多
Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s yst...Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s ystem and a method for determining 3D motion parameters of an object from binocu lar sequence images are introduced. The main steps include camera calibration, t he matching of motion and stereo images, 3D feature point correspondences and re solving the motion parameters. Finally, the experimental results of acquiring th e motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned meth od are presented.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event det...How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event detection system, based on sorted subtopic matching algorithm and constructs the entire design framework. In this p^per, the subtopics contained in old topics (or news stories) are sorted in descending order according to their importance to the topic(or news stories), and form a sorted subtopic sequence. In the process of subtopic matching, subtopic scoring matrix is used to determine whether a new story is reporting a new event. Experimental results show that the sorted subtopic matching model improved the accuracy and effectiveness ofthenew event detection system in cyberspace.展开更多
Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the ou...Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the output signal to noise ratio(SNR)is raised effectively,at the same time,the symbol reception is completed for DSFH at low input SNR.Firstly,the radio frequency(RF)and intermediate frequency(IF)signals are analyzed based on the super-heterodyne reception of DSFH;secondly,the equations of probability density function(PDF),output power spectrum and SNR of the STSR output are derived for the IF signal;finally,the algorithm of the optimal matching STSR is proposed with the optimal matching parameters.The simulation results show that the algorithm can effectively solve the detection failure,as the global output SNR of DSFH is strongly improved that the output SNR can reach-17.72 d B when the input SNR is-20 d B after the processing of the optimal matching STSR.展开更多
基金supported by the National Natural Science Foundations of China(Nos.51205193,51475221)
文摘Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.
基金Supported by the National Natural Science Foundation of ChinaNational Key Lab. on Integrated Serrices Network
文摘This paper proposes a new block matching criterion called the bit-correlation matching function for image sequence coding. When using the identical fast searching algorithm, the bit-correlation matching function not only results in nearly the same accuracy in displacement estimation as the mean square error function, but also makes the algorithm low in computation complexity and easy to parallel implementation, thus reducing the coding time of image sequence efficiently.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
文摘Exactly capturing three dimensional (3D) motion i nf ormation of an object is an essential and important task in computer vision, and is also one of the most difficult problems. In this paper, a binocular vision s ystem and a method for determining 3D motion parameters of an object from binocu lar sequence images are introduced. The main steps include camera calibration, t he matching of motion and stereo images, 3D feature point correspondences and re solving the motion parameters. Finally, the experimental results of acquiring th e motion parameters of the objects with uniform velocity and acceleration in the straight line based on the real binocular sequence images by the mentioned meth od are presented.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.
基金Funded by the Planning Project of National Language Committee in the "12th 5-year Plan"(No.YB125-49)the Foundation for Key Program of Ministry of Education,China(No.212167)the Fundamental Research Funds for the Central Universities(No.SWJTU12CX096)
文摘How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event detection system, based on sorted subtopic matching algorithm and constructs the entire design framework. In this p^per, the subtopics contained in old topics (or news stories) are sorted in descending order according to their importance to the topic(or news stories), and form a sorted subtopic sequence. In the process of subtopic matching, subtopic scoring matrix is used to determine whether a new story is reporting a new event. Experimental results show that the sorted subtopic matching model improved the accuracy and effectiveness ofthenew event detection system in cyberspace.
基金the Natural Science of Foundation of Hebei Province(No.F2017506006)
文摘Aiming at the detection failure of strong noise interference in the dual channel of the dual-sequence frequency hopping(DSFH),the scale transformation stochastic resonance(STSR)is applied for the first time,and the output signal to noise ratio(SNR)is raised effectively,at the same time,the symbol reception is completed for DSFH at low input SNR.Firstly,the radio frequency(RF)and intermediate frequency(IF)signals are analyzed based on the super-heterodyne reception of DSFH;secondly,the equations of probability density function(PDF),output power spectrum and SNR of the STSR output are derived for the IF signal;finally,the algorithm of the optimal matching STSR is proposed with the optimal matching parameters.The simulation results show that the algorithm can effectively solve the detection failure,as the global output SNR of DSFH is strongly improved that the output SNR can reach-17.72 d B when the input SNR is-20 d B after the processing of the optimal matching STSR.