Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin...Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain...Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate ...To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design.展开更多
Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model ...Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.展开更多
The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effecti...The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effective forest resource management.Based on multi-source data including forest distribution,topography,NDVI,meteorology and soil conditions,key forest ecosystem services,including total forest volume,carbon storage,water yield,soil retention and habitat quality were mapped and evaluated for the Funiu Mountain Region through integrated deployment of the CASA model,the InVEST3.2 model and the ArcGIS10.2 software.The characteristics of trade-offs and synergies among different ecosystem services were then mapped and considered across multiple spatial scales(i.e.,by region,north and south slopes,vertical belt)using the spatial overlay analysis method.The main results are as follows:(1)Mean forest volume is 49.26 m^(3)/ha,carbon density is 156.94 t/ha,water yield depth is 494.46 mm,the unit amount of soil retention is 955.4 t/ha,and the habitat quality index is 0.79.(2)The area of forests with good synergy is 28.79%,and the area of forests with poor synergy is 10.15%,while about 61.06%of forests show severe trade-offs and weak trade-offs.The overall benefits of forest ecosystem services in the study area are still low.In the future,bad synergy and severe trade-off areas should be the focus of forest resource management and efficiency regulation.(3)Synergy between ecosystem services is better for forest on south slope than that on north slope.Deciduous broad-leaved forest belt at moderate elevations on south slope in the mountains(SIII)has the highest synergies,while that at low elevations on north slope(NI)exhibits the lowest synergy levels.展开更多
In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not th...In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders.展开更多
Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data ...Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data model. Bouguer gravity covering the whole Shenzhen City was calculated with a 1-km resolution. Wavelet multi-scale analysis(MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows an NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the results of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also yield important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20 km. In general, NE-striking faults extend deeper than NW-striking faults and have a larger dip angle.展开更多
This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material ...This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.展开更多
Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failur...Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately.展开更多
Identifying the active and inactive period of earthquakes in Chinese mainland is of great importance for guiding mid-short term, especially short term, earthquake forecast.……
Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature ex...Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.展开更多
The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of ur...The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning.展开更多
Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress flu...Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation, Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) pro- cessed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite.展开更多
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th...The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble.展开更多
The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the ...The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.展开更多
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (...Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.展开更多
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金support from the National Natural Science Foundation of China(12202042)the Fundamental Research Funds for the Central Universities(QNXM20220011,FRF-TP-22-119A1,FRF-IDRY-22-001)+2 种基金the Open Fund Project of Sinopec State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(33550000-22-ZC0613-0269)China Postdoctoral Science Foundations(2021M700391)High-end Foreign Expert Introduction Program(G2023105006L).
文摘Shale gas, as a clean, low-carbon, and abundant unconventional natural gas resource, plays a crucial role in achieving clean energy transformation and carbon neutrality. The Fuling shale gas reservoir in Sichuan Basin stands out as China's most promising area for shale gas exploration and recovery. However, the continuous recovery of shale gas in the southern Sichuan Basin has led to well interference events in hundreds of wells, with the furthest well distance reaching over 2000 m. This study introduces a multi-scale approach for transient analysis of a multi-well horizontal pad with well interference in shale gas reservoirs. The approach utilizes Laplace transform technology, boundary element theory, and the finite difference method to address the complexities of the system. Well interference is managed using the pressure superposition principle. To validate the proposed multi-scale method, a commercial numerical simulator is employed. The comprehensive pressure behavior of a multi-well horizontal pad in a shale gas reservoir is analyzed, encompassing wellbore storage effect, skin effect, bilinear flow, linear flow, pseudo-radial flow of primary fractures, well interference period, dual-porosity flow, pseudo-radial flow of the total system, and boundary-dominated flow. A case study is conducted on the typical well, the well with the longest production history in the Fuling shale gas reservoir. The rate transient analysis is conducted to integrate up to 229 days of shale gas production daily data and wellhead pressure data, enabling the generation of pressure behavior under unit flow rate. The results indicate that the linear flow, transitional flow, and boundary-dominated flow are more likely to be observed in the actual data. Secondary fractures are considered to be the primary pathways for fluid migration during well interference events. The evaluated formation permeability is 2.58 × 10^(-2) mD, the well spacing is 227.8 m, the diffusion coefficient is 1.49 × 10^(-4), and the skin factor is 0.09.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金supported by the National Natural Science Foundation of China(No.12172001)the University Natural Science Research Project of Anhui Province(No.2022AH020029)+1 种基金the Anhui Provincial Natural Science Foundation(Nos.2208085Y01 and 2008085QA23)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province(No.2023-YF129),China.
文摘Self-vibrating systems comprised of active materials have great potential for application in the fields of energy harvesting,actuation,bionic instrumentation,and autonomous robotics.However,it is challenging to obtain analytical solutions describing these systems,which hinders analysis and design.In this work,we propose a self-vibrating liquid crystal elastomer(LCE)fiber-spring system exposed to spatially-constant gradient light,and determine analytical solutions for its amplitude and period.First,using a dynamic model of LCE,we obtain the equations governing the self-vibration.Then,we analyze two different motion states and elucidate the mechanism of self-vibration.Subsequently,we derive analytical solutions for the amplitude and frequency using the multi-scale method,and compare the solutions with numerical results.The analytical outcomes are shown to be consistent with the numerical calculations,while taking far less computational time.Our findings reveal the utility of the multi-scale method in describing self-vibration,which may contribute to more efficient and accurate analyses of self-vibrating systems.
基金the National Key Research and Development Program of China(No.2021YFC3100800)the National Natural Science Foundation of China(Nos.42407235 and 42271026)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJ-JYRC-2023-54).
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金the research project funded by the Fundamental Research Funds for the Central Universities(No.HIT.OCEP.2024038)the National Natural Science Foundation of China(No.52372351)the State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster,China(No.MS02240107)。
文摘To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design.
基金Supported by the National Natural Science Foundation of China (No. 20106008)National HI-TECH Industrialization Program of China (No. Fagai-Gaoji-2004-2080)Science Fund for Distinguished Young Scholars of Zhejiang University (No. 111000-581645).
文摘Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.
基金National Natural Science Foundation of China,No.41671090National Basic Research Program(973 Program),No.2015CB452702。
文摘The trade-offs and synergies of forest ecosystem service are important research topics for several disciplines.The multi-scale analysis of service trade-offs and synergies assists in the implementation of more effective forest resource management.Based on multi-source data including forest distribution,topography,NDVI,meteorology and soil conditions,key forest ecosystem services,including total forest volume,carbon storage,water yield,soil retention and habitat quality were mapped and evaluated for the Funiu Mountain Region through integrated deployment of the CASA model,the InVEST3.2 model and the ArcGIS10.2 software.The characteristics of trade-offs and synergies among different ecosystem services were then mapped and considered across multiple spatial scales(i.e.,by region,north and south slopes,vertical belt)using the spatial overlay analysis method.The main results are as follows:(1)Mean forest volume is 49.26 m^(3)/ha,carbon density is 156.94 t/ha,water yield depth is 494.46 mm,the unit amount of soil retention is 955.4 t/ha,and the habitat quality index is 0.79.(2)The area of forests with good synergy is 28.79%,and the area of forests with poor synergy is 10.15%,while about 61.06%of forests show severe trade-offs and weak trade-offs.The overall benefits of forest ecosystem services in the study area are still low.In the future,bad synergy and severe trade-off areas should be the focus of forest resource management and efficiency regulation.(3)Synergy between ecosystem services is better for forest on south slope than that on north slope.Deciduous broad-leaved forest belt at moderate elevations on south slope in the mountains(SIII)has the highest synergies,while that at low elevations on north slope(NI)exhibits the lowest synergy levels.
基金This project is supported by National Fundamental Research and Development Project Foundation of China(No.G1998020321).
文摘In the diagnosis of rotor crack based on wavelet analysis, it is a painful task to find out an adaptive mother wavelet as many of them can be chosen and the analytic results of different mother wavelets are yet not the same. For this limitation of wavelet analysis, a novel diagnostic approach of rotor crack based on multi-scale singular-spectrum analysis (MS-SSA) is proposed. Firstly, a Jeffcott model of a cracked rotor is developed and the forth-order Runge-Kutta method is used to solve the motion equations of this rotor to obtain its time response (signals). Secondly, a comparatively simple approach of MS-SSA is presented and the empirical orthogonal functions of different orders in various scales are regarded as analyzing functions. At last, the signals of the cracked rotor and an uncracked rotor are analyzed using the proposed approach of MS-SSA, and the simulative results are compared. The results show that, the data-adaptive analyzing functions can capture many features of signals and the rotor crack can be identified and diagnosed effectively by comparing the analytic results of signals of the cracked rotor with those of the uncracked rotor using the analyzing functions of different orders.
基金supported by the National Natural Science Foundation of China (Nos.41504015,41429401)the National 973 Project of China (No.2013CB733302)+2 种基金 China Postdoctoral Science Foundation (No.2015M572146)the National High Technology Research and Development Program of China (No.2011AA060503)the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation (No.15-01-08)
文摘Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data model. Bouguer gravity covering the whole Shenzhen City was calculated with a 1-km resolution. Wavelet multi-scale analysis(MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows an NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the results of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also yield important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20 km. In general, NE-striking faults extend deeper than NW-striking faults and have a larger dip angle.
文摘This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.
基金co-supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China (No. 11302105)
文摘Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately.
基金Chinese Joint Seismological Science Foundation and the Chinese-Greece Cooperation Project.
文摘Identifying the active and inactive period of earthquakes in Chinese mainland is of great importance for guiding mid-short term, especially short term, earthquake forecast.……
基金supported by National Natural Science Foundation of China (No. 61763037)Inner Mongolia Autonomous Region Natural Science Foundation of China(No. 2019LH06007)Science and Technology Plan Project of Inner Mongolia (No. 2019,2020GG028)。
文摘Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.
基金National Natural Science Foundation of China,No.41630644Innovative Think-tank Foundation for Young Scientists of China Association for Science and Technology,No.DXB-ZKQN-2017-048。
文摘The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning.
文摘Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation, Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) pro- cessed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite.
基金Project(NCET-05-0413)support by the Program for New Century Excellent Talents in UniversityProject(YB0142112) support by Priming Foundation of East China University of Science and Technology
文摘The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31960585)Science and Technology Major Project of Guangxi(Grant No.Guike AA22068092)+1 种基金Guangxi Science and Technology Vanguard Special Action Project(Grant No.202204)State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(Grant Nos.SKLCUSA-a201906,SKLCU-SA-c201901)。
文摘The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants.
文摘Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals.