Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects an...The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception.展开更多
Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often re...Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often require stacking multiple graph convolution layers to effectively capture long-distance relationships among nodes.This stacking not only increases computational burdens but also raises the risk of over-smoothing,which can lead to the neglect of crucial local action features.To address this issue,we propose a novel multi-scale adaptive large kernel graph convolutional network(MSLK-GCN)to effectively aggregate local and global spatio-temporal correlations while maintaining the computational efficiency.The core components of the network include two multi-scale large kernel graph convolution(LKGC)modules,a multi-channel adaptive graph convolution(MAGC)module,and a multi-scale temporal self-attention convolution(MSTC)module.The LKGC module adaptively focuses on active motion regions by utilizing a large convolution kernel and a gating mechanism,effectively capturing long-distance dependencies within the skeleton sequence.Meanwhile,the MAGC module dynamically learns relationships between different joints by adjusting connection weights between nodes.To further enhance the ability to capture temporal dynamics,the MSTC module effectively aggregates the temporal information by integrating Efficient Channel Attention(ECA)with multi-scale convolution.In addition,we use a multi-stream fusion strategy to make full use of different modal skeleton data,including bone,joint,joint motion,and bone motion.Exhaustive experiments on three scale-varying datasets,i.e.,NTU-60,NTU-120,and NW-UCLA,demonstrate that our MSLK-GCN can achieve state-of-the-art performance with fewer parameters.展开更多
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金Project supported by the National Natural Science Foundation of China(Nos.11272285,61008048,and 10876036)the Zhejiang Provincial Natural Science Foundation(No.LY12F02026)the Department of Science and Technology of Zhejiang Province(No.2009C31112),China
文摘The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception.
基金supported in part by the National Natural Science Foundation of China under Grant No.61976127the Shandong Provincial Natural Science Foundation under Grant No.ZR2024MF030+1 种基金the Taishan Scholar Program of Shandong Province of China under Grant No.tsqn202306150the Key Research and Development Program of Shandong Province of China under Grant No.2025CXPT096.
文摘Graph convolutional networks(GCNs)have become a dominant approach for skeleton-based action recognition tasks.Although GCNs have made significant progress in modeling skeletons as spatial-temporal graphs,they often require stacking multiple graph convolution layers to effectively capture long-distance relationships among nodes.This stacking not only increases computational burdens but also raises the risk of over-smoothing,which can lead to the neglect of crucial local action features.To address this issue,we propose a novel multi-scale adaptive large kernel graph convolutional network(MSLK-GCN)to effectively aggregate local and global spatio-temporal correlations while maintaining the computational efficiency.The core components of the network include two multi-scale large kernel graph convolution(LKGC)modules,a multi-channel adaptive graph convolution(MAGC)module,and a multi-scale temporal self-attention convolution(MSTC)module.The LKGC module adaptively focuses on active motion regions by utilizing a large convolution kernel and a gating mechanism,effectively capturing long-distance dependencies within the skeleton sequence.Meanwhile,the MAGC module dynamically learns relationships between different joints by adjusting connection weights between nodes.To further enhance the ability to capture temporal dynamics,the MSTC module effectively aggregates the temporal information by integrating Efficient Channel Attention(ECA)with multi-scale convolution.In addition,we use a multi-stream fusion strategy to make full use of different modal skeleton data,including bone,joint,joint motion,and bone motion.Exhaustive experiments on three scale-varying datasets,i.e.,NTU-60,NTU-120,and NW-UCLA,demonstrate that our MSLK-GCN can achieve state-of-the-art performance with fewer parameters.