期刊文献+
共找到5,721篇文章
< 1 2 250 >
每页显示 20 50 100
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:6
1
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors 被引量:1
2
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
3
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure Electronic structure Reaction pathway
在线阅读 下载PDF
Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery
4
作者 Yukang Xiong Lin Lv +3 位作者 Guokun Ma Hanbin Wang Houzhao Wan Hao Wang 《Chinese Journal of Structural Chemistry》 2025年第11期17-27,共11页
Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocata... Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocatalysts.This work constructs the interfacial structure of cobalt-iron alloys@phosphates(denoted as CoFe/CoFePO)as OER catalyst through a two-step approach using water-bath and hydrothermal methods,which demonstrated significant OER activity in alkaline media,requiring a low overpotential of 271 mV to achieve 10 mA cm^(−2) and exhibiting a competitive Tafel slope of 65 mV dec^(-1),alongside sustained operational stability.The enhanced performance can be attributed to the improved electrical conductivity due to the participation of CoFe alloys and the increased number of active sites through partial phosphorylation,which synergistically enhances charge transfer processes and accelerates OER kinetics.Moreover,dynamic structural evolution during OER process was thoroughly probed,and the results show that alloys@phosphates gradually evolve into phosphate radicalmodified CoFe hydroxyoxides that act as the actual active phase.Highlighting its practical applicability,the integration of prepared catalyst into zinc-air batteries leads to markedly improved performance,thereby offering promising new strategic directions for the development of next-generation OER electrocatalysts. 展开更多
关键词 Zn-air battery ELECTROCATALYST Interfacial structure Oxygen evolution reaction structural evolution
原文传递
Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption
5
作者 Jintang Zhou Kexin Zou +11 位作者 Jiaqi Tao Jun Liu Yijie Liu Lvtong Duan Zhenyu Cheng Borui Zha Zhengjun Yao Guiyu Peng Xuewei Tao Hexia Huang Yao Ma Peijiang Liu 《Journal of Materials Science & Technology》 2025年第12期36-44,共9页
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin... Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field. 展开更多
关键词 MOFS multi-scale regulation Yolk-shell structure Amorphous carbon Oxygen vacancy Microwave absorption
原文传递
Defect modulation and in-situ exsolution in Y_(2)Ru_(2)O_(7)@NiFeP/Ru heterostructure for enhanced oxygen evolution reaction
6
作者 Eunsu Jang Jihoon Kim +2 位作者 Jangwoo Cho Jaeho Lee Jooheon Kim 《Rare Metals》 2025年第2期1014-1023,共10页
Pyrochlore oxide(Y_(2)Ru_(2)O_(7))has been identified as a promising catalyst for the oxygen evolution reaction(OER)in advanced green energy strategies.However,its electrochemical inertness necessitates the exploratio... Pyrochlore oxide(Y_(2)Ru_(2)O_(7))has been identified as a promising catalyst for the oxygen evolution reaction(OER)in advanced green energy strategies.However,its electrochemical inertness necessitates the exploration of an effective strategy to facilitate electronic modulation.This study proposes a surface modification approach involving the integration of defective NiFe(D-NiFe)nanoparticles onto a Y_(2)Ru_(2)O_(7)(YRO)support(YRO@D-NiFeP/Ru)using a Prussian blue analog(PBA).Numerous cyanide(CN)vacancies are generated through the oxidation treatment of the NiFe PBA grown on the YRO support,yielding a defective PBA precursor(YRO@D-PBA).Subsequent annealing facilitates the transformation to the D-NiFe nanoparticles on the YRO support(YRO@D-NiFeP/Ru),which augments the exposure of Ni3+active sites beneficial for the OER.Moreover,the reduction of Ru cations from YRO results in the exsolution of Ru nanoparticles,which promotes synergistic charge transfer from the nanoparticles to the interior of Y_(2)Ru_(2)O_(7).Consequently,YRO@D-NiFeP/Ru exhibits a remarkable voltage of 1.49 V at 10 mA·cm^(−2) and the lowest Tafel slope of 42.4 mV·dec^(−1).In addition,a Zn–air battery constructed with YRO@D-NiFeP/Ru exhibits an outstanding power density of 136.2 mW·cm^(−2) and high charge–discharge stability,confirming the applicability of YRO@D-NiFeP/Ru in metal-air batteries. 展开更多
关键词 Pyrochlore oxide structure Prussian blue analog Defect structure Oxygen evolution reaction Znair battery
原文传递
Multilevel structured CuCoP with synergistic catalytic active site designed for hydrogen evolution coupled gluconic acid synthesis
7
作者 Xiang-Dong Ma Rui Liu +2 位作者 Shan Yue Hai-Jiao Xie Xiao-Hong Xia 《Rare Metals》 2025年第5期3141-3155,共15页
Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the coppe... Hydrogen production coupled with small molecule oxidation derived by renewable energy power has been widely studied as an effective method to reduce energy consumption and prepare added value production.Here,the copper-cobalt phosphide with a multilevel structure has been designed based on the hard and soft acids and bases theory.The nanocone composed of lamellas presented a sharp tip,which a positive effect on the mass transfer enhanced by a local electric field,and the nanolamellas contain CoP/Cu_(3)P interface provide the highly selective active site for the gluconic acid(GNA)synthesis and hydrogen evolution.The catalyst can drive hydrogen evolution at 5 A·cm^(-2)up to 437 h without active decay,and the electrocatalytic glucose oxidation at anode presents high efficiency due to Cu(I)introduction and the synergetic effect between interfaces.Density functional theory(DFT)calculation shows that water splitting more readily occurs at the CoP,which provides adsorbed H and-OH for hydrogen evolution and glucose oxidation,respectively,and glucose adsorption more readily occurs at the Cu_(3)P,which presents lower conversion energy for high value-added GNA.Efficient hydrogen evolution and glucose conversion indicate its high intrinsic activity and synergetic effect.This work provides a special interface construction strategy for the catalytic conversion of hydrogen and small molecules. 展开更多
关键词 ELECTROCATALYSIS Glucose oxidation Hydrogen evolution Multilevel structure Synergetic effect
原文传递
Structure deformation of Ni-Fe-Se enables efficient oxygen evolution via RE atoms doping
8
作者 Hong-Rui Zhao Cheng-Zong Yuan +7 位作者 Cong-Hui Li Wen-Kai Zhao Fu-Ling Wu Lei Xin Hong Yin Shu-Feng Ye Xiao-Meng Zhang Yun-Fa Chen 《Rare Metals》 2025年第1期336-348,共13页
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri... The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance. 展开更多
关键词 Ce doping structure deformation Ni-Fe-Se Electron transfer Oxygen evolution
原文传递
Phase Morphology Evolution and Rheological Behavior of Toughened Polypropylene Composite with Controllable Brittle–Ductile Transition Temperature Using SEPS@HDPE Core–Shell Structure
9
作者 Jiahao Shen Zhiyi Zhang +4 位作者 Wenwen Yu Jiayi Wang Weixuan Wang Yonggang Shangguan Qiang Zheng 《Engineering》 2025年第7期128-135,共8页
The toughness of thermoplastic polymers such as polypropylene(PP)can be improved by adding elastomers-based toughening agents,and the phase morphology of these toughening agents is very important for the strength and ... The toughness of thermoplastic polymers such as polypropylene(PP)can be improved by adding elastomers-based toughening agents,and the phase morphology of these toughening agents is very important for the strength and toughness of PP.The low-temperature toughness of PP was improved by inserting high-density polyethylene(HDPE)between PP and polystyrene-b-ethylene-co-propyleneb-polystyrene(SEPS)to form an unusual SEPS@HDPE core–shell structure,with SEPS as the core and HDPE as the shell.Based on the microtopography and rheological behavior characterization,HDPE in PP/SEPS/HDPE composites was found to serve as an emulsifier,decrease the size of SEPS particles,and promote the homogeneous dispersion of dispersed phase particles in the matrix.An increase in the HDPE content shifted the toughening mechanism of PP composites from cavitation to matrix shear yielding.The reduction in the distance between the dispersed core–shell structure particles promoted shear yielding in the PP composites,leading to increased toughness.The creation of an intermediate HDPE layer with a moderate modulus was crucial for dispersing stress concentrations and significantly improving toughness without compromising the tensile strength.These findings will facilitate the fabrication of high-toughness PP products at low temperatures. 展开更多
关键词 Core-shell structure Low-temperature toughness Phase morphology evolution Rheological behavior
在线阅读 下载PDF
Unusual texture evolution in extruded AZ31 Mg alloy plates with bimodal grain structures
10
作者 Z.L.Wu T.Nakata +7 位作者 E.Y.Guo C.Xu H.C.Pan X.J.Wang H.L.Shi X.J.Li S.Kamado L.Geng 《Journal of Magnesium and Alloys》 2025年第10期4933-4949,共17页
AZ31 Mg alloy plates with bimodal grain structures were fabricated via conventional extrusion under varying temperatures and speeds to investigate the mechanisms governing dynamic recrystallization(DRX)and texture evo... AZ31 Mg alloy plates with bimodal grain structures were fabricated via conventional extrusion under varying temperatures and speeds to investigate the mechanisms governing dynamic recrystallization(DRX)and texture evolution.Although all samples exhibited similar DRXed grain sizes(5.0–6.5μm)and fractions(76%–80%),they developed distinct c-axis orientations and mechanical properties.The P1 sample(350℃,0.1 mm/min)exhibited the lowest yield strength(∼192 MPa)but the highest elongation(∼18.2%),whereas the P3 sample(400℃,0.6 mm/min)showed the highest yield strength(∼241 MPa)and the lowest elongation(∼14.2%).The P2 sample(400℃,0.1 mm/min)demonstrated intermediate behavior(∼226 MPa,∼17.7%).These variations were primarily attributed to differences in c-axis orientations,particularly their alignment with respect to the normal direction(ND)and their slight deviation from the extrusion direction(ED).Microstructural analysis revealed that distinct DRX mechanisms were activated under different extrusion conditions.P1 predominantly exhibited twinning-induced dynamic recrystallization(TDRX)and continuous dynamic recrystallization(CDRX),whereas P3 primarily showed CDRX and discontinuous dynamic recrystallization(DDRX).These DRX mechanisms,in combination with the activated slip systems governed by the evolving local stress state,collectively contributed to orientation rotation and texture development.During the early stage of extrusion,tensile strain along the ED promoted basalslip,rotating the c-axes toward the ND.As deformation progressed,compressive strain along the ND became dominant.In P1,basalslip remained active,aligning the c-axes along the ND and forming a smaller angle with the ED.In contrast,P3 exhibited predominant pyramidal<c+a>slip,resulting in a pronounced deviation of the c-axes from the ND and a slightly larger angle relative to the ED.The P2 sample exhibited a transitional texture state between those of P1 and P3. 展开更多
关键词 Magnesium alloys Dynamic recrystallization Bimodal grain structure Extrusion plate Texture evolution
在线阅读 下载PDF
Coordination structure regulation of Pt-N_(x)O_(y)-S_(1)catalytic sites for promoting high-efficiency hydrogen evolution
11
作者 Minmin Wang Chao Feng +4 位作者 Xin Zhang Ping He Houyu Zhu Yunqi Liu Yuan Pan 《Journal of Energy Chemistry》 2025年第3期661-669,共9页
The development of atomically dispersed platinum-based catalysts with high performance and welldefined active site structures is crucial for the commercialization of water electrolysis for hydrogen production.Herein,w... The development of atomically dispersed platinum-based catalysts with high performance and welldefined active site structures is crucial for the commercialization of water electrolysis for hydrogen production.Herein,we propose a coordination dual-shell synergistic regulation mechanism of coal pitchderived carbon-supported single atom Pt-N_(x)O_(y)-S_(1)catalytic sites by a self-assembly-pyrolysis strategy for promoting hydrogen evolution reaction(HER).The Pt-N_(3)O1-S_(1)sites exhibited the highest HER performance,with an overpotential of 92 mV at a current density of 400 mA cm^(-2).At 50 mV,the turnover frequency was 34.04 s^(-1)and the mass activity was 22.83 A mg_(Pt)^(-l),which is 63.4 times that of the 20%Pt/C catalyst.Theoretical calculations revealed that the coordination dual-shell impacts the electronic structure of the Pt atoms and the adsorption strength towards reactants synergistically.The S atoms in the second coordination shell weakened the strength of Pt-N first shell,resulting the more surface valence electrons around Pt atoms,exhibiting the most suitable adsorption free energy and enhancing the adsorption of H^(+)on Pt-N_(3)O_(1)-S_(1)sites,thus enhancing the electrocatalytic HER process by promoting Volmer step.This work reveals that coordination dual-shell synergistic regulation is an effective strategy for enhancing the electrocatalytic reaction process. 展开更多
关键词 Single-atom catalysts Hydrogen evolution reaction Self-assembly pyrolysis strategy Coordinationen vironment Electronic structure
在线阅读 下载PDF
Hollow Spherical Structure CoS_(2-x)Se_(x) for Electrocatalytic Hydrogen Evolution Reaction
12
作者 LIANG Dandan ZHANG Ying +3 位作者 HOU Weili SHANG Jihua REN Haibo SUN Yufeng 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1014-1021,共8页
A series of CoS_(2-x)Se_(x)(x=0.05,0.1,0.2,0.3,and 2)composite catalysts were synthesized on carbon fiber paper via the hydrothermal method with Se doping.By precisely controlling the reaction temperature and Se dopin... A series of CoS_(2-x)Se_(x)(x=0.05,0.1,0.2,0.3,and 2)composite catalysts were synthesized on carbon fiber paper via the hydrothermal method with Se doping.By precisely controlling the reaction temperature and Se doping level,a hollow spherical catalyst structure composed of CoSSe was successfully synthesized,which exhibited exceptional activity for hydrogen evolution in acidic solutions.The influences of Se doping on the microstructure and catalytic mechanism of hydrogen evolution reaction(HER)of these composites were systematically investigated.The experimental results reveal that the hollow spherical sample displays an overpotential value of 143 mV along with a Tafel slope value of 69.8 mV·dec^(-1)at a current density of 10 mA·cm^(-2)in an acid aqueous solution.Furthermore,it demonstrates remarkable cycling stability after undergoing 3000 cycles.The comprehensive analysis indicates that Se doping optimizes the electronic structure and enhances conductivity,meanwhile the unique hollow spherical architecture increases active sites for HER and significantly improves overall electrocatalytic performance. 展开更多
关键词 hydrogen evolution reaction electrocatalysis cobalt chalcogenides anion compound substitution hollow spherical structure
原文传递
Structure and property evolution of atomically precise palladium clusters
13
作者 Chang-Qing Meng Wan-Yu Cheng +6 位作者 Hao Yan Hui-Xin Xiang Chen-Hao Ruan Yue Zhao Cong-Qiao Xu Jun Li Chuan-Hao Yao 《Rare Metals》 2025年第4期2822-2829,共8页
Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clus... Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clusters stabilized by cyclohexanethiol(HSC_(6)H_(11))ligands.Using electrospray ionization mass spectrometry(ESI-MS)and single-crystal X-ray diffraction(SXRD),structures of the Pd clusters ranging from Pd4(SC_(6)H_(11))8 to Pd18(SC_(6)H_(11))36 were determined.This analysis revealed a structure evolution from polygonal to elliptical geometries of the PdnS2n frameworks as the cluster size increased.UV-Vis-NIR spectroscopy,combined with quantum chemical calculations,elucidated changes in the electronic structure of the clusters.Catalytic studies on the Sonogashira cross-coupling reactions demonstrated a size-dependent decline in activity attributed to variations in structural arrangements and electronic properties.Mechanistic insights proposed a distinctive Pd(Ⅱ)-Pd(Ⅳ)catalytic cycle.This research underscores how ligands and cluster size influence the structures and properties of Pd clusters,offering valuable insights for the future design and application of Pd clusters in advanced catalysis and beyond. 展开更多
关键词 structure evolution catalytic properties quantum chemical calculations cyclohexanethiol ligands electrospray ionization mass spectrometry esi ms atomically precise palladium clusters sonogashira cross coupling reactions electronic structure
原文传递
Microstructure evolution and self-discharge degradation mechanism in Li/MnO_(2) primary batteries
14
作者 Jia-Rui Zhang Cheng-Yu Li +5 位作者 Xiang Gao Jie Yin Cai-Rong Jiang Jian-Jun Ma Wen-Ge Yang Yong-Jin Chen 《Rare Metals》 2025年第2期1392-1400,共9页
Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is s... Li/MnO_(2) primary batteries are widely used in industry for their high specific capacity and safety.However,a deep comprehension of the Li^(+)insertion mechanism and the high self-discharge rate of the batteries is still needed.Here,the storage mechanism of Li^(+)in the tunnel structure of MnO_(2) as well as the dissolution and migration of Mn-ions were investigated based on multi-scale approaches.The Li/Mn ratio(at%)is determined at about 0.82 when the discharge voltage decreases to 2 V.The limited Li-ions transport rate in the bulk MnO_(2) restrains the reduction reaction,resulting in a low practical specific capacity.Moreover,utilizing spherical aberration-corrected transmission electron microscopy(TEM)coupled with electron energy loss spectroscopy(EELS),the presence of a mixed valence state layer of Mn^(2+)/Mn^(3+)/Mn^(4+)on the surface of the original 20 nm MnO_(2) particles was identified,which could contribute to the initial dissolution of Mn-ions.The battery separator exhibited channels for Mn-ions migration and diffusion and aggregated Mn particles.We put forward the discharge and degradation route in the ways of Mn-ions trajectories,and our findings provide a deep understanding of the high self-discharge rates and the capacity decay of Li-Mn primary batteries. 展开更多
关键词 Li MnO primary batteries multi scale approaches primary batteries Li insertion mechanism self discharge degradation microstructure evolution tunnel structure Li Mn ratio
原文传递
Multi-scale crystal plasticity finite element simulations of the microstructural evolution and formation mechanism of adiabatic shear bands in dual-phase Ti20C alloy under complex dynamic loading 被引量:3
15
作者 Yu Zhou Qunbo Fan +3 位作者 Xin Liu Duoduo Wang Xinjie Zhu Kai Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期138-148,共11页
A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by com... A dynamic compression test was performed on α+β dual-phase titanium alloy Ti20C using a split Hopkinson pressure bar.The formation of adiabatic shear bands generated during the compression process was studied by combining the proposed multi-scale crystal plasticity finite element method with experimental measurements.The complex local micro region load was progressively extracted from the simulation results of a macro model and applied to an established three-dimensional multi-grain microstructure model.Subsequently,the evolution histories of the grain shape,size,and orientation inside the adiabatic shear band were quantitatively simulated.The results corresponded closely to the experimental results obtained via transmission electron microscopy and precession electron diffraction.Furthermore,by calculating the grain rotation and temperature rise inside the adiabatic shear band,the microstructural softening and thermal softening effects of typical heavily-deformed α grains were successfully decoupled.The results revealed that the microstructural softening stress was triggered and then stabilized(in general)at a relatively high value.This indicated that the mechanical strength was lowered mainly by the grain orientation evolution or dynamic recrystallization occurring during early plastic deformation.Subsequently,thermal softening increased linearly and became the main softening mechanism.Noticeably,in the final stage,the thermal softening stress accounted for 78.4% of the total softening stress due to the sharp temperature increase,which inevitably leads to the stress collapse and potential failure of the alloy. 展开更多
关键词 Titanium alloy Adiabatic shear band multi-scale crystal plastic finite element method(CPFEM) Orientation evolution Softening mechanism
原文传递
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis 被引量:1
16
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
An experimental and computational investigation on structural evolution of the In_(2)O_(3)catalyst during the induction period of CO_(2)hydrogenation 被引量:1
17
作者 Zhangqian Wei Mingxiu Wang +6 位作者 Xinnan Lu Zixuan Zhou Ziqi Tang Chunran Chang Yong Yang Shenggang Li Peng Gao 《Chinese Journal of Catalysis》 2025年第5期301-313,共13页
As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol syn... As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol synthesis,In_(2)O_(3)is an ideal catalyst and has garnered significant attention.Herein,cubic In_(2)O_(3)nanoparticles were prepared via the precipitation method and evaluated for CO_(2)hydrogenation to produce methanol.During the initial 10 h of reaction,CO_(2)conversion gradually increased,accompanied by a slow decrease of methanol selectivity,and the reaction reached equilibrium after 10-20 h on stream.This activation and induction stage may be attributed to the sintering of In_(2)O_(3)nanoparticles and the creation of more oxygen vacancies on In_(2)O_(3)surfaces.Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage,enhancing the performance of In_(2)O_(3)catalyst for CO_(2)hydrogenation.Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO_(2)conversion.However,they predominantly promote the formation of CO instead of methanol,leading to reduced methanol selectivity.These predictions align well with the above-mentioned experimental observations.Our work thus provides an in-depth analysis of the induction stage of the CO_(2)hydrogenation process on In_(2)O_(3)nano-catalyst,and offers valuable insights for significantly improving the CO_(2)reactivity of In_(2)O_(3)-based catalysts while maintaining long-term stability. 展开更多
关键词 In_(2)O_(3) CO_(2)hydrogenation Methanol production Induction and activation structural evolution
在线阅读 下载PDF
Intricate Fault Systems in Longmenshan Structural Belt's Northern End:Exploring Structural Evolution and Seismic Rupture Behavior in the Eastern Tibetan Plateau
18
作者 Hanyu Huang Renqi Lu +3 位作者 Dengfa He Jinliang Gao Weikang Zhang Lingyu Kang 《Journal of Earth Science》 2025年第1期250-265,共16页
The Longmenshan structural belt on the eastern edge of the Tibetan Plateau experienced the impactful Mw7.92008 Wenchuan Earthquake,causing a 350 km surface rupture.Traditional models attribute this to the Beichuan and... The Longmenshan structural belt on the eastern edge of the Tibetan Plateau experienced the impactful Mw7.92008 Wenchuan Earthquake,causing a 350 km surface rupture.Traditional models attribute this to the Beichuan and Pengguan faults,but our research reveals a complex fault system at the northern end,with inconsistencies in surface rupture,aftershock distribution,and focal mechanisms.We integrate shallow geology,active source seismic reflection,and magnetotelluric profiling to establish a deep structural model for the northern end of the Longmenshan structural belt.This area exhibits dominant reverse thrust nappe tectonics,and analyzing the tectonic evolution history provides insights into deformation propagation from the orogenic belt toward the Sichuan Basin.Focal mechanism analysis and relocated aftershock data reveals two distinct types of seismogenic structures in the northern end of the Longmenshan structural belt.In the middle to northern segments,the reverse fault type is attributed to reactivated pre-existing faults.Conversely,at the northern end,the strike-slip fault type originates from high-angle co-seismic rupture cutting through pre-existing reverse faults.This study enhances our understanding of fault complexity and seismic mechanisms in the northeastern Longmenshan structural belt,providing new insights into regional tectonics. 展开更多
关键词 Longmenshan structural belt fault system structural evolution TECTONICS EARTHQUAKES focal mechanism
原文传递
Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components 被引量:26
19
作者 Chuang WANG Jihong ZHU +5 位作者 Manqiao WU Jie HOU Han ZHOU Lu MENG Chenyang LI Weihong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期386-398,共13页
By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as red... By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs. 展开更多
关键词 Aerospace vehicle components Lattice-based optimization multi-scale Solid-lattice hybrid structure Topology optimization
原文传递
Triassic Collisional Structures and Post-CollisionalDeformation of Bixiling UHP Rock Stack: Insightsfor Tectonic Evolution of UHP MetamorphicBelt in Dabie Massif, Central China 被引量:8
20
作者 SuoShutian ZhongZengqiu 《Journal of China University of Geosciences》 SCIE CSCD 2002年第1期1-13,共13页
Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean contine... Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation. 展开更多
关键词 Bixiling collisional structure extensional deformation ECLOGITE exhumation tectonic evolution.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部