期刊文献+
共找到17,158篇文章
< 1 2 250 >
每页显示 20 50 100
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors 被引量:1
1
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption
2
作者 Jintang Zhou Kexin Zou +11 位作者 Jiaqi Tao Jun Liu Yijie Liu Lvtong Duan Zhenyu Cheng Borui Zha Zhengjun Yao Guiyu Peng Xuewei Tao Hexia Huang Yao Ma Peijiang Liu 《Journal of Materials Science & Technology》 2025年第12期36-44,共9页
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin... Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field. 展开更多
关键词 MOFS multi-scale regulation Yolk-shell structure Amorphous carbon Oxygen vacancy Microwave absorption
原文传递
Multi-scale analysis of the spatial structure of China’s major function zoning 被引量:9
3
作者 WANG Yafei FAN Jie 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期197-211,共15页
The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of ur... The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning. 展开更多
关键词 China major function zoning multi-scale spatial gradient pole-axis CORE-PERIPHERY spatial mosaic
原文传递
MULTI-SCALE COHERENT STRUCTURES IN TURBULENT BOUNDARY LAYER DETECTED BY LOCALLY AVERAGED VELOCITY STRUCTURE FUNCTIONS 被引量:1
4
作者 刘建华 姜楠 +1 位作者 王振东 舒玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期495-504,共10页
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which ... The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied. 展开更多
关键词 turbulent boundary layer coherent structure flatness factor intermittency locally averaged velocity structure function
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
5
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Multi-Scale Vision Transformer with Dynamic Multi-Loss Function for Medical Image Retrieval and Classification
6
作者 Omar Alqahtani Mohamed Ghouse +2 位作者 Asfia Sabahath Omer Bin Hussain Arshiya Begum 《Computers, Materials & Continua》 2025年第5期2221-2244,共24页
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi... This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison. 展开更多
关键词 Medical image retrieval vision transformer multi-scale encoding multi-loss function ISIC-2018 ChestX-ray14
在线阅读 下载PDF
Insights into microbial actions on hydraulic concrete structures:Effects of ammonia and sulfate on community structure,function and biofilm morphology
7
作者 Longfei Wang Wentao Zhuo +6 位作者 Tao He Zongyi Peng You Mou Minyue Wan Xinnan Pan Yi Li Zhengjian Yang 《Journal of Environmental Sciences》 2025年第11期430-442,共13页
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated... Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures. 展开更多
关键词 Hydraulic concrete structures Community structure Nutrient levels functional prediction Microbial action
原文传递
Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components 被引量:26
8
作者 Chuang WANG Jihong ZHU +5 位作者 Manqiao WU Jie HOU Han ZHOU Lu MENG Chenyang LI Weihong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期386-398,共13页
By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as red... By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs. 展开更多
关键词 Aerospace vehicle components Lattice-based optimization multi-scale Solid-lattice hybrid structure Topology optimization
原文传递
Neuroplasticicity mechanism of acupuncture for pain-induced emotions: From function to structure
9
作者 Hong-yu LU Bao-jin WANG +2 位作者 Cui MA An-guo LIU Xing-ke YAN 《World Journal of Acupuncture-Moxibustion》 2025年第4期276-282,共7页
Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplas... Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplasticity.Neuroplasticity is composed of two types,functional neuroplasticity and structural neuroplasticity.(1)Acupuncture improves functional neuroplasticity by inhibiting the activation of mi-croglia and astrocytes,regulating the expression of neurotransmitters and receptors,modulating cellular signal transduction pathways,and optimizing synaptic transmission efficiency.(2)Acupuncture improves structural neuroplasticity by modulating neuronal synaptic plasticity,inhibiting neuronal apoptosis,and up-regulating the expression of the BDNF/TrKB/CREB signaling pathway.Additionally,acupuncture up-regulates the expression of brain-derived neurotrophic factors to improve both the functional and struc-tural neuroplasticity,thus relieves pain-induced emotions.The above discovery provides an approach to the mechanism research of acupuncture for pain-induced emotions. 展开更多
关键词 ACUPUNCTURE Pain-induced emotions NEUROPLASTICITY functional neuroplasticity structural neuroplasticity
原文传递
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
10
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 Ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
Structure-function insights of natural Ganoderma polysaccharides:advances in biosynthesis and functional food applications
11
作者 Zhou-Wei Wu Xue-Fang Zhao +5 位作者 Chen-Xi Quan Xiao-Cui Liu Xin-Yu Tao Yu-jie Li Xing-Rong Peng Ming-Hua Qiu 《Natural Products and Bioprospecting》 2025年第2期143-175,共33页
Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position G... Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position GPs as dual-purpose agents for medicinal and functional food development.This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action,such as TLR signaling in immune modulation,apoptosis pathways in anti-tumor activity,and their prebiotic effects on gut microbiota.Additionally,the structure-activity relationships(SARs)of GPs are highlighted to elucidate their biological efficacy.Advances in green extraction techniques,including ultrasonic-assisted and enzymatic methods,are discussed for their roles in enhancing yield and aligning with sustainable production principles.Furthermore,the review addresses biotechnological innovations in polysaccharide biosynthesis,improving production efficiency and making large-scale production feasible.These insights,combined with ongoing research into their bioactivity,provide a solid foundation for developing health-promoting functional food products that incorporate GPs.Furthermore,future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides. 展开更多
关键词 Ganoderma polysaccharides extraction techniques structural characteristics Bioactivity biosynthetic pathways functional food applications
在线阅读 下载PDF
Investigation of Near-Surface S-Wave Velocity Structure beneath the Epicenter and adjacent Area of the Jishishan Earthquake by using the Receiver Function
12
作者 Fan-chang Meng Ruo-ge Xu +2 位作者 Hui Sun Bo Li Yun Long 《Applied Geophysics》 2025年第3期647-659,893,共14页
Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structur... Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structure through teleseismic receiver function analysis by using the amplitude of direct P-wave.The results reveal that the epicentral area(Liugou Township and surroundings)exhibits markedly low S-wave velocities of 400-600 m/s,with a mean value of(500±50)m/s.In contrast,intermountain basins-Guanting Basin and Dahejia Basin-demonstrate significantly elevated velocities,exceeding the epicentral zone by 100-300 m/s,with values concentrated at 600-900 m/s.Notably,localized areas such as Jintian Village and Caotan Village maintain stable S-wave velocities of(700±30)m/s.The western margin tectonic belt of Jishishan displays distinctive velocity differentiation:A pronounced velocity gradient zone along the 35.8°N latitude boundary separates northern areas(<550 m/s)from southern regions(>750 m/s).These findings demonstrate significant spatial heterogeneity in shallow S-wave velocity structures,primarily controlled by three factors:(1)topographic-geomorphic units,(2)stratigraphic lithological contrasts,and(3)anthropogenic modifications.The persistent low-velocity anomalies(<600 m/s)in the epicentral zone and northern Yellow River T2 terrace likely correlate with Quaternary unconsolidated sediments,enhanced groundwater circulation,and bedrock weathering.These results provide critical geophysical constraints for understanding both the seismogenic environment of the Jishishan earthquake and its damage distribution patterns.Furthermore,they establish a foundational framework for regional seismic intensity evaluation,site amplification analysis,and secondary hazard risk assessment. 展开更多
关键词 Jishishan Earthquake Dense Seismic Array Receiver function S-Wave Velocity structure
在线阅读 下载PDF
Research progress on the structure and physiological functions of PKG
13
作者 Meng-Jie Peng Chao Li +1 位作者 Xiang-Xiang Zhang Xiao-Jun Han 《Biomedical Engineering Communications》 2025年第3期13-22,共10页
Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological process... Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological processes,including vascular smooth muscle relaxation,myocardial cell function regulation,neuron growth,and synaptic plasticity,et al.In recent years,the role of PKG in diseases has gradually attracted attention,and the abnormalities in its signaling pathway are closely related to the occurrence and development of cardiovascular and neurological diseases.Although PKG has been widely studied,its complex functions in different physiological systems and potential innovative applications still need to be further explored.This article reviews the purification techniques for PKG,discusses the advantages and disadvantages of different extraction methods,summarizes the structure and activation mechanism of each domain of PKG,and analyzes the physiological functions of PKG in organisms,especially the well-established roles in the cardiovascular system,nervous system,and endocrine system.The emerging therapeutic applications of PKG are also reviewed.In addition,the challenges of this field are proposed at the end. 展开更多
关键词 protein kinase G plasmid expression technology structural domain activation mechanism physiological function
在线阅读 下载PDF
Stable crystal structure prediction using machine learning-based formation energy and empirical potential function
14
作者 Lu Li Jianing Shen +4 位作者 Qinkun Xiao Chaozheng He Jinzhou Zheng Chaoqin Chu Chen Chen 《Chinese Chemical Letters》 2025年第11期563-568,共6页
Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ... Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ensuring high performance and reliable application of materials.Among which,the thermodynamic and molecular dynamics stability is especially important.Therefore,this paper proposes a method to predict stable crystal structures using formation energy and Lennard-Jones potential as evaluation indicators.Specifically,we use graph neural network models to predict the formation energy of crystals,and employ empirical formulas to calculate the Lennard-Jones potential.Then,we apply Bayesian optimization algorithms to search for crystal structures with low formation energy and Lennard-Jones potential approaching zero,in order to ensure the thermodynamic stability and dynamics stability of materials.In addition,considering the impact of the bonding situation between atoms in the crystal on the structural stability,this article uses contact map to analyze the atomic bonding situation of each crystal to screen out more stable materials.Finally,the experimental results show that the method we proposed can not only reduce the time for crystal structure prediction,but also ensure the stability of crystal materials. 展开更多
关键词 Crystal structure prediction Machine learning Formation energy Empirical potential function Thermodynamic stability Dynamics stability
原文传递
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
15
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure multi-scale optimization Topology optimization Fiber winding angle structural compliance
在线阅读 下载PDF
Multi-scale fatigue damage model for steel structures working under high temperature 被引量:1
16
作者 Huajing Guo Bin Sun Zhaoxia Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期615-623,共9页
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat... In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model. 展开更多
关键词 Steel structures High temperature multi-scale damage model MICROCRACKS GENERALIZED self-consistentmethod
在线阅读 下载PDF
A multi-scale point of view on the structure–property relationships of A15 superconductors
17
作者 Yanlong Ding Min Pan +1 位作者 Shuiquan Deng Yong Zhao 《Journal of Modern Transportation》 2014年第2期122-126,共5页
Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2).... Nb3Sn and other A15 members have been widely applied in nuclear power, nuclear magnetic resonance, and high-energy particle accelerators for their high critical current density (Jc) and upper critical field (Bc2). There have been comprehensive and intensive studies on the applications, the fundamental lattice dynamic and electronic properties, etc., of A15 superconductors. Various reviews on the preparations, structures, and properties have already been written in the last few years. Nevertheless, on account of the large amount of existing facts and views, a coherent view on the relations between the structures and properties has not appeared to unify the facts. This article sketches a multi-scale point of view on the relations between the multi- scale structures and the corresponding properties. 展开更多
关键词 multi-scale A15 compounds structure PROPERTIES
在线阅读 下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
18
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
在线阅读 下载PDF
Characteristics of multi-scale pore structure of coal and its influence on permeability 被引量:1
19
作者 Pan Jienan Zhang Zhaozhao +2 位作者 Li Meng Wu Yawen Wang Kai 《Natural Gas Industry B》 2019年第4期357-365,共9页
Due to the uneven distribution of pore size in coal and its wide distribution range,it is difficult to effectively characterize the multi-scale pore structure of coal by a single method.In this paper,the multi-scale p... Due to the uneven distribution of pore size in coal and its wide distribution range,it is difficult to effectively characterize the multi-scale pore structure of coal by a single method.In this paper,the multi-scale pore structure characteristics of coal were analyzed comprehensively by using scanning electron microscope,low-temperature liquid nitrogen adsorption,high-pressure mercury intrusion and constant-rate mercury intrusion.In addition,the effects of metamorphism on the volume and specific surface area of pores in coal were revealed,and the relationships between coal rock permeability and pore structure characteristic parameters were described.And the following research results were obtained.First,with the increase of coal metamorphism,the volume and specific surface area of nanopores in coal decrease first and then increase,and they reach the minimum value when Ro,max is about 1.8%.Second,the pore and throat radii of coal samples are overall in the form of normal distribution.And with the increase of coal metamorphism,the pore radius corresponding to the maximum distribution frequency increases.Third,the samples of low-rank bituminous coal are the highest in throat radius distribution range,connected throat radius and average throat radius.Fourth,the samples of anthracite coal are the lowest in throat radius distribution range and connected throat radius.Fifth,there is a single main peak in the distribution of pore-throat ratios of low-and medium-rank bituminous coal samples,and the pore-throat ratios corresponding to the main peak is relatively low.Sixth,the permeability of coal is in a positive correlation with porosity and an average throat radius,and in a negative correlation with an average pore-throat ratio,but in no obvious correlation with an average pore radius. 展开更多
关键词 COAL multi-scale pore structure Scanning electron microscope Combined liquid nitrogen adsorption and high-pressure mercury intrusion Constant-rate mercury intrusion PERMEABILITY Degree of metamorphism
在线阅读 下载PDF
Characterizing multi-scale shale pore structure based on multi-experimental imaging and machine learning
20
作者 Jun Yao Lei Liu +2 位作者 Yongfei Yang Hai Sun Lei Zhang 《Natural Gas Industry B》 2023年第4期361-371,共11页
An accurate and comprehensive understanding of shale pore structure is fundamental and critical for accurate reserves evaluation and efficient hydrocarbon development.Thus,by taking the shale of Paleogene Eocene Shahe... An accurate and comprehensive understanding of shale pore structure is fundamental and critical for accurate reserves evaluation and efficient hydrocarbon development.Thus,by taking the shale of Paleogene Eocene Shahejie Formation in the Jiyang Depression,Bohai Bay Basin,as an example,the 2D and 3D multi-resolution images of the shale microstructure are obtained by multiple imaging technologies,including X-ray computed tomography,large-field scanning electron microscopy,scanning electron microscopy and focused ion beam scanning electron microscopy.By integrating image processing and machine learning algorithms,the shale pore structure is characterized at a single scale and multi scales.The results are obtained as follows.First,the shale pore space in the study area is mainly composed of microfractures,inorganic pores,organic matters and organic pores,and exclusively shows multi-scale characteristics.Second,there are various types of inorganic pores,and abundant dissolution pores;organic matters are distributed as strips and patches,and no organic pores are found in some organic matters.Third,pores with radius less than 20 nm account for 25%,those with radius between 20 and 50 nm account for 19%,those with radius between 50 and 100 nm account for 29%,those with radius between 100 and 500 nm account for 14%,those with radius between 500 nm and 20 mm account for 11%,and those with radius between 20 and 50 mm account for 2%.Fourth,the organic pores are less connected than the inorganic pores.The connectivity between organic pores and inorganic pores plays a crucial role in hydrocarbon migration,and microfractures control fluid flow channels.Fifth,pores with radius less than 50 nm are dominantly organic pores,those with radius between 50 and 500 nm are mainly organic and inorganic pores,and microfractures mainly contribute to the pores with radius more than 500 nm.It is concluded that a single imaging experiment cannot accurately and comprehensively reveal the multi-scale micro pore structure of a shale reservoir.Through integration of multiple imaging technologies and machine learning algorithms,the shale pore structure can be recognized and characterized at both single scale and multi scales.The proposed new method provides accurate and comprehensive information of multi-scale pore structures. 展开更多
关键词 SHALE multi-scale Multi-type Pore structure Multi-experimental imaging technology Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部